Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The Role of circRNA-miRNA-mRNA Regulatory Network and its Potential Biomarker Function in Colorectal Cancer

Author(s): Xutang Fu, Pengpeng Chen and Hao Wang*

Volume 30, Issue 12, 2023

Published on: 29 November, 2023

Page: [1020 - 1029] Pages: 10

DOI: 10.2174/0109298665263662231108053654

Price: $65

Abstract

Background: Revealing the process and mechanism of colorectal cancer will facilitate the discovery of new biomarkers and contribute to the development of targeted drugs.

Objectives: This study aimed to explore the potentially functional circRNA-miRNA-mRNA network in colorectal cancer (CRC), and further explore its mechanism.

Methods: Bioinformatics analysis was used to identify the differentially expressed circRNAs and mRNAs. Gene set enrichment analysis and KEGG pathways analysis were used to screen out the differentially expressed genes and observe crucial pathways that might have a strong association with CRC. Then, a network targeting circRNA, miRNA, and mRNA has been built by using the Cytoscape software. In addition, the expression of circRNA_0001573, miR-382-5p, and FZD3 was detected by qRT-PCR in CRC tissues and cells (SW480, HCT116, and HT29).

Results: Abnormal expressions of circRNAs and mRNAs were obtained by bioinformatics analysis and visualized by Volcano plot and Heatmap. A series of highly correlated pathways were enriched by KEGG analysis. The interaction network of circRNA_0001573/miR-382-5p/FZD3 axis was predicted. The expressions of circRNA_0001573 and FZD3 were highly upregulated and the miR- 382-5p expression level was decreased in CRC tissues and cell lines (SW480, HCT116, and HT29).

Conclusion: Our study suggests that circRNA_0001573 and circRNA_0001573/miR-382-5p/FZD3 regulatory networks might provide a potential diagnosis for colorectal cancer.

Keywords: Colorectal cancer, circRNA_0001573, miR-382-5p, FZD3, colorectal cancer (CRC), KEGG pathways, CRC tissues and cell lines.

Graphical Abstract
[1]
Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol., 2019, 14(2), 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[2]
Petre-Mandache, C.B.; Margaritescu, D.N.; Mitrut, R.; Kamal, A.M.; Padureanu, V.; Cucu, M.G.; Mitrut, P. Risk factors and genetic predisposition in colorectal cancer: A study on young and old adults. Curr. Health Sci. J., 2021, 47(1), 84-88.
[PMID: 34211752]
[3]
Tang, L.; Wei, F.; Wu, Y.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Deng, H.; Cao, K.; Zhou, M.; Xiang, B.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res., 2018, 37(1), 87.
[http://dx.doi.org/10.1186/s13046-018-0758-7] [PMID: 29688867]
[4]
Zeng, H.; Taussig, D.; Cheng, W.H.; Johnson, L.; Hakkak, R. Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutrients, 2017, 9(1), 25.
[http://dx.doi.org/10.3390/nu9010025] [PMID: 28045428]
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[6]
Zheng, R.S.; Zhang, S.W.; Sun, K.X.; Chen, R.; Wang, S.M.; Li, L.; Zeng, H.M.; Wei, W.W.; He, J. Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi, 2023, 45(3), 212-220.
[PMID: 36944542]
[7]
Tunsjø, H.S.; Gundersen, G.; Rangnes, F.; Noone, J.C.; Endres, A.; Bemanian, V. Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(7), 1367-1376.
[http://dx.doi.org/10.1007/s10096-019-03562-7] [PMID: 31025134]
[8]
Gan, X.; Wang, T.; Chen, Z.Y.; Zhang, K.H. Blood-derived molecular signatures as biomarker panels for the early detection of colorectal cancer. Mol. Biol. Rep., 2020, 47(10), 8159-8168.
[http://dx.doi.org/10.1007/s11033-020-05838-0] [PMID: 32979165]
[9]
Han, Y.D.; Oh, T.J.; Chung, T.H.; Jang, H.W.; Kim, Y.N.; An, S.; Kim, N.K. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin. Epigenetics, 2019, 11(1), 51.
[http://dx.doi.org/10.1186/s13148-019-0642-0] [PMID: 30876480]
[10]
Zhou, H.; Zhu, L.; Song, J.; Wang, G.; Li, P.; Li, W.; Luo, P.; Sun, X.; Wu, J.; Liu, Y.; Zhu, S.; Zhang, Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer, 2022, 21(1), 86.
[http://dx.doi.org/10.1186/s12943-022-01556-2] [PMID: 35337361]
[11]
Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: current technology and clinical applications. J. Hematol. Oncol., 2022, 15(1), 131.
[http://dx.doi.org/10.1186/s13045-022-01351-y] [PMID: 36096847]
[12]
Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genomics, 2019, 13(1), 34.
[http://dx.doi.org/10.1186/s40246-019-0220-8] [PMID: 31370908]
[13]
Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; Bhat, A.A.; Macha, M.A. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer, 2022, 21(1), 79.
[http://dx.doi.org/10.1186/s12943-022-01543-7] [PMID: 35303879]
[14]
Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic — implementation issues and future challenges. Nat. Rev. Clin. Oncol., 2021, 18(5), 297-312.
[http://dx.doi.org/10.1038/s41571-020-00457-x] [PMID: 33473219]
[15]
Salfer, B.; Li, F.; Wong, D.T.W.; Zhang, L. Urinary cell-free DNA in liquid biopsy and cancer management. Clin. Chem., 2022, 68(12), 1493-1501.
[http://dx.doi.org/10.1093/clinchem/hvac122] [PMID: 36213956]
[16]
Casagrande, G.M.S.; Silva, M.O.; Reis, R.M.; Leal, L.F. Liquid biopsy for lung cancer: Up-to-date and perspectives for screening programs. Int. J. Mol. Sci., 2023, 24(3), 2505.
[http://dx.doi.org/10.3390/ijms24032505] [PMID: 36768828]
[17]
Asgari-Karchekani, S.; Karimian, M.; Mazoochi, T.; Taheri, M.A.; Khamehchian, T. CDX2 protein expression in colorectal cancer and itscorrelation with clinical and pathological characteristics, prognosis, and survival rate of patients. J. Gastrointest. Cancer, 2020, 51(3), 844-849.
[http://dx.doi.org/10.1007/s12029-019-00314-w] [PMID: 31630373]
[18]
Neri, G.; Arpa, G.; Guerini, C.; Grillo, F.; Lenti, M.V.; Giuffrida, P.; Furlan, D.; Sessa, F.; Quaquarini, E.; Viglio, A.; Ubezio, C.; Pasini, A.; Ferrero, S.; Sampietro, G.; Ardizzone, S.; Latella, G.; Mescoli, C.; Rugge, M.; Zingone, F.; Barresi, V.; Ciccocioppo, R.; Pedrazzoli, P.; Corazza, G.R.; Luinetti, O.; Solcia, E.; Paulli, M.; Di Sabatino, A.; Vanoli, A. Small bowel adenocarcinomas featuring special AT-rich sequence-binding protein 2 (SATB2) expression and a colorectal cancer-like immunophenotype: A potential diagnostic pitfall. Cancers, 2020, 12(11), 3441.
[http://dx.doi.org/10.3390/cancers12113441] [PMID: 33228145]
[19]
Wong, N.A.C.S.; Adamczyk, L.A.; Evans, S.; Cullen, J.; Oniscu, A.; Oien, K.A. A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of colorectal carcinoma. Histopathology, 2017, 71(1), 34-41.
[http://dx.doi.org/10.1111/his.13194] [PMID: 28226180]
[20]
Abouelkhair, M.B.; Mabrouk, S.H.; Zaki, S.S.A.; Nada, O.H.; Hakim, S.A. The diagnostic value of cadherin 17 and CDX2 expression as immunohistochemical markers in colorectal adenocarcinoma. J. Gastrointest. Cancer, 2021, 52(3), 960-969.
[http://dx.doi.org/10.1007/s12029-020-00513-w] [PMID: 32929682]
[21]
Czapiewski, P.; Bobowicz, M. Pęksa, R.; Skrzypski, M.; Gorczyński, A.; Szczepańska-Michalska, K.; Korwat, A.; Jankowski, M.; Zegarski, W.; Szulgo-Paczkowska, A.; Polec, T.; Piątek, M.; Skokowski, J.; Haybaeck, J.; Żaczek, A.; Biernat, W. Keratin 7 expression in lymph node metastases but not in the primary tumour correlates with distant metastases and poor prognosis in colon carcinoma. Pol. J. Pathol., 2016, 3(3), 228-234.
[http://dx.doi.org/10.5114/pjp.2016.63774] [PMID: 28155971]
[22]
Khanom, R.; Sakamoto, K.; Pal, S.K.; Shimada, Y.; Morita, K.; Omura, K.; Miki, Y.; Yamaguchi, A. Expression of basal cell keratin 15 and keratin 19 in oral squamous neoplasms represents diverse pathophysiologies. Histol. Histopathol., 2012, 27(7), 949-959.
[PMID: 22648550]
[23]
Al-Maghrabi, J.; Emam, E.; Gomaa, W. Immunohistochemical staining of cytokeratin 20 and cytokeratin 7 in colorectal carcinomas: Four different immunostaining profiles. Saudi J. Gastroenterol., 2018, 24(2), 129-134.
[http://dx.doi.org/10.4103/sjg.SJG_465_17] [PMID: 29637921]
[24]
Bae, S.U.; Park, W.J.; Jeong, W.K.; Baek, S.K.; Lee, H.W.; Lee, J.H. Prognostic impact of telomeric repeat-containing RNA expression on long-term oncologic outcomes in colorectal cancer. Medicine, 2019, 98(14), e14932.
[http://dx.doi.org/10.1097/MD.0000000000014932] [PMID: 30946316]
[25]
Zygulska, A.L.; Pierzchalski, P. Novel diagnostic biomarkers in colorectal cancer. Int. J. Mol. Sci., 2022, 23(2), 852.
[http://dx.doi.org/10.3390/ijms23020852] [PMID: 35055034]
[26]
Price, T.J.; Tang, M.; Gibbs, P.; Haller, D.G.; Peeters, M.; Arnold, D.; Segelov, E.; Roy, A.; Tebbutt, N.; Pavlakis, N.; Karapetis, C.; Burge, M.; Shapiro, J. Targeted therapy for metastatic colorectal cancer. Expert Rev. Anticancer Ther., 2018, 18(10), 991-1006.
[http://dx.doi.org/10.1080/14737140.2018.1502664] [PMID: 30019590]
[27]
Zhao, B.; Baloch, Z.; Ma, Y.; Wan, Z.; Huo, Y.; Li, F.; Zhao, Y. Identification of potential key genes and pathways in early-onset colorectal cancer through bioinformatics analysis. Cancer Contr., 2019, 26(1)
[http://dx.doi.org/10.1177/1073274819831260] [PMID: 30786729]
[28]
Yaeger, R.; Weiss, J.; Pelster, M.S.; Spira, A.I.; Barve, M.; Ou, S.H.I.; Leal, T.A.; Bekaii-Saab, T.S.; Paweletz, C.P.; Heavey, G.A.; Christensen, J.G.; Velastegui, K.; Kheoh, T.; Der-Torossian, H.; Klempner, S.J. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N. Engl. J. Med., 2023, 388(1), 44-54.
[http://dx.doi.org/10.1056/NEJMoa2212419] [PMID: 36546659]
[29]
Yaeger, R.; Mezzadra, R.; Sinopoli, J.; Bian, Y.; Marasco, M.; Kaplun, E.; Gao, Y.; Zhao, H.; Paula, A.D.C.; Zhu, Y.; Perez, A.C.; Chadalavada, K.; Tse, E.; Chowdhry, S.; Bowker, S.; Chang, Q.; Qeriqi, B.; Weigelt, B.; Nanjangud, G.J.; Berger, M.F.; Der-Torossian, H.; Anderes, K.; Socci, N.D.; Shia, J.; Riely, G.J.; Murciano-Goroff, Y.R.; Li, B.T.; Christensen, J.G.; Reis-Filho, J.S.; Solit, D.B.; de Stanchina, E.; Lowe, S.W.; Rosen, N.; Misale, S. Molecular characterization of acquired resistance to KRASG12C–EGFR inhibition in colorectal cancer. Cancer Discov., 2023, 13(1), 41-55.
[http://dx.doi.org/10.1158/2159-8290.CD-22-0405] [PMID: 36355783]
[30]
Hermeking, H. Serial analysis of gene expression and cancer. Curr. Opin. Oncol., 2003, 15(1), 44-49.
[http://dx.doi.org/10.1097/00001622-200301000-00006] [PMID: 12490760]
[31]
Latha, N.R.; Rajan, A.; Nadhan, R.; Achyutuni, S.; Sengodan, S.K.; Hemalatha, S.K.; Varghese, G.R.; Thankappan, R.; Krishnan, N.; Patra, D.; Warrier, A.; Srinivas, P. Gene expression signatures: A tool for analysis of breast cancer prognosis and therapy. Crit. Rev. Oncol. Hematol., 2020, 151, 102964.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102964] [PMID: 32464482]
[32]
Lopez-Campistrous, A.; Adewuyi, E.E.; Williams, D.C.; McMullen, T.P.W. Gene expression profile of epithelial-mesenchymal transition mediators in papillary thyroid cancer. Endocrine, 2021, 72(2), 452-461.
[http://dx.doi.org/10.1007/s12020-020-02466-3] [PMID: 32914379]
[33]
Chatsirisupachai, K.; Palmer, D.; Ferreira, S.; de Magalhães, J.P. A human tissue‐specific transcriptomic analysis reveals a complex relationship between aging, cancer, and cellular senescence. Aging Cell, 2019, 18(6), e13041.
[http://dx.doi.org/10.1111/acel.13041] [PMID: 31560156]
[34]
Rhodes, D.R.; Chinnaiyan, A.M. Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Ann. N. Y. Acad. Sci., 2004, 1020(1), 32-40.
[http://dx.doi.org/10.1196/annals.1310.005] [PMID: 15208181]
[35]
Isella, C.; Terrasi, A.; Bellomo, S.E.; Petti, C.; Galatola, G.; Muratore, A.; Mellano, A.; Senetta, R.; Cassenti, A.; Sonetto, C.; Inghirami, G.; Trusolino, L.; Fekete, Z.; De Ridder, M.; Cassoni, P.; Storme, G.; Bertotti, A.; Medico, E. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet., 2015, 47(4), 312-319.
[http://dx.doi.org/10.1038/ng.3224] [PMID: 25706627]
[36]
Li, X.N.; Wang, Z.J.; Ye, C.X.; Zhao, B.C.; Li, Z.L.; Yang, Y. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 325.
[http://dx.doi.org/10.1186/s13046-018-1006-x] [PMID: 30591054]
[37]
Zheng, X.; Chen, L.; Zhou, Y.; Wang, Q.; Zheng, Z.; Xu, B.; Wu, C.; Zhou, Q.; Hu, W.; Wu, C.; Jiang, J. Correction to: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer, 2021, 20(1), 42.
[http://dx.doi.org/10.1186/s12943-021-01337-3] [PMID: 33632217]
[38]
Mi, H.; Dong, Q.; Muruganujan, A.; Gaudet, P.; Lewis, S.; Thomas, P.D. PANTHER version 7: Improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res., 2010, 38(S1), D204-D210.
[http://dx.doi.org/10.1093/nar/gkp1019] [PMID: 20015972]
[39]
Zhou, W.; Wang, Y.; Fujino, M.; Shi, L.; Jin, L.; Li, X.K.; Wang, J. A standardized fold change method for microarray differential expression analysis used to reveal genes involved in acute rejection in murine allograft models. FEBS Open Bio, 2018, 8(3), 481-490.
[http://dx.doi.org/10.1002/2211-5463.12343] [PMID: 29511625]
[40]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[41]
Servant, N.; Gravier, E.; Gestraud, P.; Laurent, C.; Paccard, C.; Biton, A.; Brito, I.; Mandel, J.; Asselain, B.; Barillot, E.; Hupé, P. EMA - A R package for Easy Microarray data analysis. BMC Res. Notes, 2010, 3(1), 277.
[http://dx.doi.org/10.1186/1756-0500-3-277] [PMID: 21047405]
[42]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[43]
Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442.
[http://dx.doi.org/10.1016/j.molcel.2018.06.034] [PMID: 30057200]
[44]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[45]
Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet., 2013, 9(9), e1003777.
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[46]
Memczak, S.; Papavasileiou, P.; Peters, O.; Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One, 2015, 10(10), e0141214.
[http://dx.doi.org/10.1371/journal.pone.0141214] [PMID: 26485708]
[47]
Bahn, J.H.; Zhang, Q.; Li, F.; Chan, T.M.; Lin, X.; Kim, Y.; Wong, D.T.W.; Xiao, X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem., 2015, 61(1), 221-230.
[http://dx.doi.org/10.1373/clinchem.2014.230433] [PMID: 25376581]
[48]
Yang, H.; Li, X.; Meng, Q.; Sun, H.; Wu, S.; Hu, W.; Liu, G.; Li, X.; Yang, Y.; Chen, R. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol. Cancer, 2020, 19(1), 13.
[http://dx.doi.org/10.1186/s12943-020-1139-3] [PMID: 31973707]
[49]
Liu, J.; Liu, T.; Wang, X.; He, A. Circles reshaping the RNA world: From waste to treasure. Mol. Cancer, 2017, 16(1), 58.
[http://dx.doi.org/10.1186/s12943-017-0630-y] [PMID: 28279183]
[50]
Zhang, Y.; Pisano, M.; Li, N.; Tan, G.; Sun, F.; Cheng, Y.; Zhang, Y.; Cui, X. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related peripheral neuropathy. Cell. Signal., 2021, 78, 109872.
[http://dx.doi.org/10.1016/j.cellsig.2020.109872] [PMID: 33290841]
[51]
Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; Li, N.; Zhou, W.; Yu, Y.; Cao, X. Circular RNA circMTO1 acts as the sponge of microRNA‐9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4), 1151-1164.
[http://dx.doi.org/10.1002/hep.29270] [PMID: 28520103]
[52]
Chen, X.; Chen, R.X.; Wei, W.S.; Li, Y.H.; Feng, Z.H.; Tan, L.; Chen, J.W.; Yuan, G.J.; Chen, S.L.; Guo, S.J.; Xiao, K.H.; Liu, Z.W.; Luo, J.H.; Zhou, F.J.; Xie, D. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial–mesenchymal transition. Clin. Cancer Res., 2018, 24(24), 6319-6330.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1270] [PMID: 30305293]
[53]
Wu, Y.; Xie, Z.; Chen, J.; Chen, J.; Ni, W.; Ma, Y.; Huang, K.; Wang, G.; Wang, J.; Ma, J.; Shen, S.; Fan, S. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol. Cancer, 2019, 18(1), 73.
[http://dx.doi.org/10.1186/s12943-019-1007-1] [PMID: 30940151]
[54]
Shen, L.; Lu, W.; Huang, Y.; He, J.; Wang, Q.; Zheng, X.; Wang, Z. SNORD15B and SNORA5C: Novel diagnostic and prognostic biomarkers for colorectal cancer. BioMed Res. Int., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/8260800] [PMID: 35586811]
[55]
Zhang, Y.; Wang, Y.; Zhang, B.; Li, P.; Zhao, Y. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed. Pharmacother., 2023, 163, 114786.
[http://dx.doi.org/10.1016/j.biopha.2023.114786] [PMID: 37119736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy