Skip to main content
Log in

Improving the robust design of piezoelectric energy harvesters by using polynomial chaos expansion and multiobjective optimization

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Harvesting electrical energy from mechanical vibrations through piezoelectric-based resonant devices is a suitable form of generating alternative electrical sources for several applications, most dedicated to powering small electronic devices. This technique has attracted considerable attention over the past decades, mainly due to piezoelectric materials’ high electrical charge density. However, the amount of harvestable energy is usually small and sensitive to variabilities in design, manufacturing, operation, and environmental conditions. Hence, it is essential to account for predictable and potentially relevant uncertainties during the design of energy harvesting devices. This work presents strategies for the robust design of resonant piezoelectric energy harvesters, considering the presence of uncertainties in design, manufacturing, and mounting conditions, such as the bonding of the piezoelectric materials and the clamping of the resonant device. The work proposes and discusses strategies for finite element modeling, accounting for adhesive bonding of piezoelectric materials and imperfect clamping; harvestable power output mean value and dispersion estimation with Polynomial Chaos Expansion; and robust optimization using multiobjective optimization techniques. Relevant general conclusions concerning harvesting devices include but are not limited to, devices with shorter resonating beams and larger tip masses tend to present performances that are nominally better but also less robust. Additionally, reducing the effective electrical resistance may improve robustness without significantly losing the mean value performance. Also, through an assessment of the most relevant design variables and uncertain parameters, some aspects that should receive special attention when designing, manufacturing, and mounting these devices are discussed, such as the bonding of piezoelectric patches and the clamping of cantilever beams due to their essential effect on the robustness of the device. It is also shown that including well-selected design variables may mitigate the impact of uncertainties and, thus, improve the robustness of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ali, S.F., Friswell, M.I., Adhikari, S.: Piezoelectric energy harvesting with parametric uncertainty. Smart Mater. Struct. 19(10), 105010 (2010)

    Article  Google Scholar 

  • Aloui, R., Larbi, W., Chouchane, M.: Uncertainty quantification and global sensitivity analysis of piezoelectric energy harvesting using macro fiber composites. Smart Mater. Struct. 29(9), 095014 (2020)

    Article  Google Scholar 

  • Ang, A.H.S., Tang, W.H.: Probability Concepts in Engineering Planning and Design, vol. 1. Basic Principles, Wiley, New York (1975)

    Google Scholar 

  • Beyer, H.G., Sendhoff, B.: Robust optimization-a comprehensive survey. Computer Methods in Applied Mechanics and Engineering 196(33–34), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee, T., Karlicic, D., Adhikari, S., Friswell, M.I.: Parametric amplification in a stochastic nonlinear piezoelectric energy harvester via machine learning. In: Data Science in Engineering, Volume 9, Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, pp 283–291 (2022)

  • Dash, R.C., Sharma, N., Maiti, D.K., Singh, B.N.: Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network. J. Intell. Mater. Syst. Struct. 33(16), 2019–2032 (2022)

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2022)

    Article  Google Scholar 

  • dos Santos, K.R., Beck, A.T.: A benchmark study on intelligent sampling techniques in monte carlo simulation. Lat. Am. J. Solids Struct. 12(4), 624–648 (2015)

    Article  Google Scholar 

  • Dutoit, N.E., Wardle, B.L., Kim, S.G.: Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121–160 (2005)

    Article  Google Scholar 

  • Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. John Wiley & Sons (2011)

    Book  Google Scholar 

  • Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2009)

    Article  Google Scholar 

  • Eshghi, A.T., Lee, S., Sadoughi, M.K., Hu, C., Kim, Y.-C., Seo, J.-H.: Design optimization under uncertainty and speed variability for a piezoelectric energy harvester powering a tire pressure monitoring sensor. Smart Mater. Struct. 26(10), 105037 (2017)

    Article  Google Scholar 

  • Franco, V.R., Varoto, P.S.: Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters. Mech. Syst. Signal Process. 93, 593–609 (2017)

    Article  Google Scholar 

  • Godoy, T.C., Trindade, M.A., Deü, J.-F.: Topological optimization of piezoelectric energy harvesting devices for improved electromechanical efficiency and frequency range. In: Proceedings of 10th World Congress on Computational Mechanics (WCCM 2012), São Paulo, pp 4003–4016 (2014)

  • Godoy, T.C., Trindade, M.A.: Effect of parametric uncertainties on the performance of a piezoelectric energy harvesting device. J. Braz. Soc. Mech. Sci. Eng. 34, 552–560 (2012)

    Article  Google Scholar 

  • Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromec. Microeng. 18, 104013 (2008)

    Article  Google Scholar 

  • Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(4), 584–595 (2005)

    Article  Google Scholar 

  • Hu, H., Xue, H., Hu, Y.: A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6), 1177–1187 (2007)

    Article  Google Scholar 

  • Kim, J., Lee, T.H., Song, Y., Sung, T.H.: Robust design optimization of fixed-fixed beam piezoelectric energy harvester considering manufacturing uncertainties. Sens. Actuat. A Phys. 260, 236–246 (2017)

    Article  Google Scholar 

  • Lesieutre, G.A., Ottman, G.K., Hofmann, H.F.: Damping as a result of piezoelectric energy harvesting. J. Sound Vib. 269(3), 991–1001 (2004)

    Article  Google Scholar 

  • Li, Y., Zhou, S., Litak, G.: Robust design optimization of a nonlinear monostable energy harvester with uncertainties. Meccanica 55(9), 1753–1762 (2020)

    Article  MathSciNet  Google Scholar 

  • Lobato, F.S., Steffen, V., Jr.: Multi-Objective Optimization Problems: Concepts and Self-Adaptive Parameters with Mathematical and Engineering Applications. Springer, Cham, Switzerland (2017)

    Book  MATH  Google Scholar 

  • Lopez, R.H., Beck, A.T.: Reliability-based design optimization strategies based on form: a review. J. Braz. Soc. Mech. Sci. Eng. 34(4), 506–514 (2012)

    Article  Google Scholar 

  • Maki, L.H., Valencia, M.S., Varoto, P.S.: Dynamic performance and uncertainty analysis of a piezometaelastic structure for vibration control and energy harvesting. In: Special Topics in Structural Dynamics & Experimental Techniques, Volume 5, Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, pp 215–231 (2021)

  • Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Martinelli, C., Coraddu, A., Cammarano, A.: Performance-aware design for piezoelectric energy harvesting optimisation via finite element analysis. Int. J. Mech. Mater. Design 19, 121–136 (2023)

    Article  Google Scholar 

  • Martins, P.H., Trindade, M.A., Varoto, P.S.: Simplified robust and multiobjective optimization of piezoelectric energy harvesters with uncertain parameters. Int. J. Mech. Mater. Design 18(1), 63–85 (2022)

    Article  Google Scholar 

  • Nguyen, V.-T., Kumar, P., Leong, J.Y.C.: Finite element modelling and simulations of piezoelectric actuators responses with uncertainty quantification. Computation 6(4), 60 (2018)

    Article  Google Scholar 

  • Norenberg, J.P., Cunha, A., da Silva, S., Varoto, P.S.: Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 109(2), 443–458 (2022)

    Article  Google Scholar 

  • Olsson, A., Sandberg, G., Dahlblom, O.: On latin hypercube sampling for structural reliability analysis. Struct. Saf. 25(1), 47–68 (2003)

    Article  Google Scholar 

  • Peralta, P., Ruiz, R.O., Meruane, V.: Experimental study of the variations in the electromechanical properties of piezoelectric energy harvesters and their impact on the frequency response function. Mech. Syst. Signal Process. 115, 469–482 (2019)

    Article  Google Scholar 

  • Poblete, A., Ruiz, R.O., Jia, G.: Hierarchical bayesian approach for model parameter updating in piezoelectric energy harvesters. Mech. Syst. Signal Process. 172, 108942 (2022)

    Article  Google Scholar 

  • Rafique, S.: Piezoelectric Vibration Energy Harvesting. Springer, Cham, Switzerland (2018)

    Book  Google Scholar 

  • Rajarathinam, M., Ali, S.F.: Parametric uncertainty and random excitation in energy harvesting dynamic vibration absorber. ASCE-ASME J. Risk Uncert. Eng. Syst. Part B Mech. Eng. 7(1), 010905 (2021)

    Article  Google Scholar 

  • Rao, S.S.: Engineering Optimization: Theory and Practice. John Wiley & Sons, New Jersey (2009)

    Book  Google Scholar 

  • Renno, J.M., Daqaq, M.F., Inman, D.J.: On the optimal energy harvesting from a vibration source. J. Sound Vib. 320(1–2), 386–405 (2009)

    Article  Google Scholar 

  • Santos, H.F.L., Trindade, M.A.: Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties. J. Braz. Soc. Mech. Sci. Eng. 33(3), 287–301 (2011)

    Article  Google Scholar 

  • Schuëller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties - An overview. Comput. Methods Appl. Mech. Eng. 198(1), 2–13 (2008)

    Article  MATH  Google Scholar 

  • Seong, S., Hu, C., Lee, S.: Design under uncertainty for reliable power generation of piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28(17), 2437–2449 (2017)

    Article  Google Scholar 

  • Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36(3), 197–206 (2004)

    Article  Google Scholar 

  • Soize, C.: Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Interdisciplinary Applied Mathematics, Springer, Cham, Switzerland (2017)

    Book  MATH  Google Scholar 

  • Soize, C., Ghanem, R.: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Stephen, N.: On energy harvesting from ambient vibration. J. Sound Vib. 293(1–2), 409–425 (2006)

    Article  Google Scholar 

  • Sudret, B., Marelli, S., Wiart, J.: Surrogate models for uncertainty quantification: An overview. In: 2017 11th European Conference on Antennas and Propagation (EUCAP), IEEE, pp 793–797 (2017)

  • Sudret, B.: Uncertainty Propagation and Sensitivity Analysis in Mechanical Models: Contributions to Structural Reliability and Stochastic Spectral Methods. Université Blaise Pascal, Clermont-Ferrand, France, Habilitation à Diriger des Recherches (2007)

    Google Scholar 

  • Tikani, R., Torfenezhad, L., Mousavi, M., Ziaei-Rad, S.: Optimization of spiral-shaped piezoelectric energy harvester using taguchi method. J. Vib. Control 24(19), 4484–4491 (2018)

    Article  Google Scholar 

  • Upadrashta, D., Yang, Y.: Trident-shaped multimodal piezoelectric energy harvester. J. Aerosp. Eng. 31(5), 04018070 (2018)

    Article  Google Scholar 

  • Wang, X.Q., Liao, Y., Mignolet, M.P.: Uncertainty analysis of piezoelectric vibration energy harvesters using a finite element level-based maximum entropy approach. ASCE-ASME J. Risk Uncert. Eng. Syst. Part B Mech. Eng. 7(1), 010906 (2021)

    Article  Google Scholar 

  • Yang, K., Zhou, Q.: Robust optimization of a dual-stage bistable nonlinear vibration energy harvester considering parametric uncertainties. Smart Mater. Struct. 28(11), 115018 (2019)

    Article  Google Scholar 

  • Zang, C., Friswell, M.I., Mottershead, J.: A review of robust optimal design and its application in dynamics. Comput. Struct. 83(4), 315–326 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by CNPq, through research grants 574001/2008-5, 309193/2014-1, 134508/2015-7 and 309001/2018-8, which the authors gratefully acknowledge. The first author acknowledges CAPES for a doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Trindade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, P.H., Trindade, M.A. & Varoto, P.S. Improving the robust design of piezoelectric energy harvesters by using polynomial chaos expansion and multiobjective optimization. Int J Mech Mater Des (2023). https://doi.org/10.1007/s10999-023-09691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-023-09691-4

Keywords

Navigation