Skip to main content
Log in

Nittka’s invariance criterion and Hilbert space valued parabolic equations in \(L_p\)

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Nittka gave an efficient criterion on a form defined on \(L_2(\Omega )\) which implies that the associated semigroup is \(L_p\)-invariant for some given \(p \in (1,\infty )\). We extend this criterion to the Hilbert space valued \(L_2(\Omega ,H)\). As an application, we consider elliptic systems of purely second order. Our main result shows that the induced semigroup is \(L_p\)-contractive for all \(p \in [p_-,p_+]\) for some \(1< p_-< 2< p_+ < \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second Edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam (2003)

  2. Angiuli, L., Lorenzi, L., Mangino, E.M.: Generation of semigroups associated to strongly coupled elliptic operator in \(L^p(\mathbb{R}^d;\mathbb{R}^m)\). arXiv:2212.12784 (2022)

  3. Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67, 33–72 (2012)

    MathSciNet  Google Scholar 

  4. Arendt, W., Kreuter, M.: Mapping theorems for Sobolev spaces of vector-valued functions. Studia Math. 240, 275–299 (2018)

    Article  MathSciNet  Google Scholar 

  5. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(\mathbb{R}^n\) and related estimates. Memoirs Amer. Math. Soc. 186(871), xviii+75 pp. (2007)

  6. Carbonaro, A., Dragičević, O.: Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients. J. Eur. Math. Soc. (JEMS) 22, 3175–3221 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cialdea, A., Maz’ya, V.: Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. 9(84), 1067–1100 (2005)

    Article  Google Scholar 

  8. Davies, E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132, 141–169 (1995)

    Article  MathSciNet  Google Scholar 

  9. Davies, E.B.: Limits on \(L^p\) regularity of self-adjoint elliptic operators. J. Differential Equations 135, 83–102 (1997)

    Article  MathSciNet  Google Scholar 

  10. Dowling, P.N., Hu, Z., Mupasiri, D.: Complex convexity in Lebesgue-Bochner function spaces. Trans. Amer. Math. Soc. 348, 127–139 (1996)

    Article  MathSciNet  Google Scholar 

  11. Egert, M.: On \(p\)-elliptic divergence form operators and holomorphic semigroups. J. Evol. Equ. 20, 705–724 (2020)

    Article  MathSciNet  Google Scholar 

  12. ter Elst, A.F.M., Liskevich, V., Sobol, Z., Vogt, H.: On the \(L^p\)-theory of \(C_0\)-semigroups associated with second-order elliptic operators with complex singular coefficients. Proc. Lond. Math. Soc. 115, 693–724 (2017)

    MathSciNet  Google Scholar 

  13. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

    Article  MathSciNet  Google Scholar 

  14. Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in \(L^p\), Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. 44, 723–800 (2011)

    Article  MathSciNet  Google Scholar 

  15. Nittka, R.: Projections onto convex sets and \(L^p\)-quasi-contractivity of semigroups. Arch. Math. (Basel) 98, 341–353 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ouhabaz, E.M.: \(L^\infty \)-contractivity of semigroups generated by sectorial forms. J. Lond. Math. Soc. 46, 529–542 (1992)

    Article  MathSciNet  Google Scholar 

  17. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, 31. Princeton University Press, Princeton, NJ (2005)

  18. Tanabe, H.: Equations of Evolution. Translated from the Japanese by N. Mugibayashi and H. Haneda. Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London (1979)

Download references

Acknowledgements

The second-named author is most grateful for the hospitality extended to him during a fruitful stay at Ulm University. He wishes to thank Ulm University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. M. ter Elst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. The derivative of a truncation

Let \(\Omega \subset \mathbb {R}^d\) be an open set. Let H be a Hilbert space. The principal aim in this section is to prove the following chain rule.

Proposition A.1

Let \(\alpha > 0\) and \(M > 0\). Let \(u \in H^1(\Omega ,H)\). Define \(v = (\Vert u\Vert _H^\alpha \wedge M) \, u\). Then \(v \in H^1(\Omega ,H)\) and

$$\begin{aligned} \partial _k v = \alpha \, \mathbbm {1}_{[\Vert u\Vert _H^\alpha < M]} \, \Vert u\Vert _H^\alpha \, {\textrm{Re}}\,({\textrm{sgn}}\,u, \partial _k u)_H \, {\textrm{sgn}}\,u + (\Vert u\Vert _H^{\alpha } \wedge M) \, \partial _k u \end{aligned}$$

for all \(k \in \{ 1,\ldots ,d \} \).

The proof involves some work. We use the following approximation by smooth functions.

Lemma A.2

The space \(C^\infty (\Omega ,H) \cap H^1(\Omega ,H)\) is dense in \(H^1(\Omega ,H)\).

Proof

This follows as in the scalar case in [1, Theorem 3.17]. \(\square \)

For an approximation argument, the next lemma is useful.

Lemma A.3

For all \(n \in \mathbb {N}\), let \(u_n \in H^1(\Omega ,H)\). Let \(u,g_1,\ldots ,g_d \in L_2(\Omega ,H)\). Suppose that \(\lim u_n = u\) in \(L_2(\Omega ,H)\) and \(\lim \partial _k u_n = g_k\) in \(L_2(\Omega ,H)\) for all \(k \in \{ 1,\ldots ,d \} \). Then \(u \in H^1(\Omega ,H)\) and \(\partial _k u = g_k\) for all \(k \in \{ 1,\ldots ,d \} \).

Proof

Let \(\varphi \in C_c^\infty (\Omega )\). Let \(k \in \{ 1,\ldots ,d \} \). Then \(- \int _\Omega u_n \, \partial _k \varphi = \int _\Omega (\partial _k u_n) \, \varphi \) for all \(n \in \mathbb {N}\). Then the lemma follows by taking the limit \(n \rightarrow \infty \). \(\square \)

For the proof of Proposition A.1, we shall approximate the function \(t \mapsto t^\alpha \wedge M\) with smooth functions. The next technical lemma gives sufficient conditions in order to apply a chain rule. Note that we do not require that \(f'\) is bounded.

Lemma A.4

Let \(f \in C^1(0,\infty )\). Suppose that f is bounded, \(\lim _{t \downarrow 0} f(t) = 0\), \(\lim _{t \downarrow 0} t \, f'(t) = 0\), and \(\sup _{t \in (0,\infty )} t \, |f'(t)| < \infty \). Let \(u \in H^1(\Omega ,H)\). Define \(v = f(\Vert u\Vert _H) \, u\). Then \(v \in H^1(\Omega ,H)\) and

$$\begin{aligned} \partial _k v = \left\{ \begin{array}{ll} \Vert u\Vert _H \, f'(\Vert u\Vert _H) \, {\textrm{Re}}\,({\textrm{sgn}}\,u, \partial _k u)_H \, {\textrm{sgn}}\,u + f(\Vert u\Vert _H) \, \partial _k u &{} \text{ on } [u \ne 0], \\ 0 &{} \text{ on } [u = 0], \end{array} \right. \nonumber \\ \end{aligned}$$
(5)

for all \(k \in \{ 1,\ldots ,d \} \).

Proof

Let \(\varepsilon > 0\). Define \(v_\varepsilon = f(\sqrt{\Vert u\Vert _H^2 + \varepsilon }) \, u\). If \(u \in C^1(\Omega ,H)\), then \(v_\varepsilon \in C^1(\Omega ,H)\) and

$$\begin{aligned} \partial _k v_\varepsilon= & {} \sqrt{\Vert u\Vert _H^2 + \varepsilon } \, f'(\sqrt{\Vert u\Vert _H^2 + \varepsilon }) \, \frac{{\textrm{Re}}\,(u, \partial _k u)_H}{\sqrt{\Vert u\Vert _H^2 + \varepsilon }} \, \frac{1}{\sqrt{\Vert u\Vert _H^2 + \varepsilon }} \, u\nonumber \\{} & {} + f(\sqrt{\Vert u\Vert _H^2 + \varepsilon }) \, \partial _k u \end{aligned}$$
(6)

for all \(k \in \{ 1,\ldots ,d \} \). Then, by Lemmas A.2 and A.3, this extends to all \(u \in H^1(\Omega ,H)\) and (6) is valid. Finally choose \(\varepsilon = \frac{1}{n}\), take the limit \(n \rightarrow \infty \), and use again Lemma A.3. \(\square \)

Now we are able to prove Proposition A.1.

Proof of Proposition A.1

For all \(n \in \mathbb {N}\), define \(f_n,f :(0,\infty ) \rightarrow \mathbb {R}\) by

$$\begin{aligned} f(t)= & {} t^\alpha \wedge M, \\ f_n(t)= & {} {\textstyle \frac{1}{2}} \, ( t^\alpha + \sqrt{M^2 + n^{-1}} - \sqrt{|t^\alpha - M|^2 + n^{-1}} ). \end{aligned}$$

Then \(\lim f_n(t) = f(t)\) for all \(t \in (0,\infty )\). Also \(\lim _{t \downarrow 0} f_n(t) = 0\) for all \(n \in \mathbb {N}\). Let \(n \in \mathbb {N}\). Then \(f_n \in C^1(0,\infty )\) and

$$\begin{aligned} f_n'(t) = {\textstyle \frac{1}{2}} \, \alpha \, t^{\alpha - 1} \Big ( 1 - \frac{t^\alpha - M}{\sqrt{(t^\alpha - M)^2 + n^{-1}}} \Big ) \end{aligned}$$

for all \(t \in (0,\infty )\). In particular, \(f_n\) is increasing. Moreover, \(\lim _{t \downarrow 0} t \, f_n'(t) = 0\). In addition, \(\lim _{n \rightarrow \infty } f_n'(t) = \alpha \, t^{\alpha - 1}\) if \(t^\alpha \le M\) and \(\lim _{n \rightarrow \infty } f_n'(t) = 0\) if \(t^\alpha > M\).

Let \(n \in \mathbb {N}\) and \(t \in (0,\infty )\). If \(t^\alpha \le M\), then

$$\begin{aligned} 0 \le t \, f_n'(t) = {\textstyle \frac{1}{2}} \, \alpha \, t^\alpha \Big ( 1 + \frac{M - t^\alpha }{\sqrt{(t^\alpha - M)^2 + n^{-1}}} \Big ) \le \alpha \, M. \end{aligned}$$

Alternatively, if \(t^\alpha > M\), then

$$\begin{aligned} 0\le & {} t \, f_n'(t) = {\textstyle \frac{1}{2}} \, \alpha \, \frac{t^\alpha - M + M}{\sqrt{(t^\alpha - M)^2 + n^{-1}}} \Big ( \sqrt{(t^\alpha - M)^2 + n^{-1}} - \sqrt{(t^\alpha - M)^2} \Big ) \\\le & {} {\textstyle \frac{1}{2}} \, \alpha \Big ( 1 + \frac{M}{\sqrt{n^{-1}}} \Big ) \sqrt{n^{-1}} \le {\textstyle \frac{1}{2}} \, \alpha \, (1 + M). \end{aligned}$$

So

$$\begin{aligned} \sup _{n \in \mathbb {N}} \sup _{t \in (0,\infty )} t \, |f_n'(t)| \le \alpha \, (M+1). \end{aligned}$$
(7)

If \(n \in \mathbb {N}\) and \(t \in (0,\infty )\), then

$$\begin{aligned} 0\le & {} f_n(t) \le {\textstyle \frac{1}{2}} \, (t^\alpha + M+1 - \sqrt{|t^\alpha - M|^2 + n^{-1}} )\\\le & {} {\textstyle \frac{1}{2}} \, (t^\alpha + M+1 - |t^\alpha - M| ) = {\textstyle \frac{1}{2}} + f(t) \le {\textstyle \frac{1}{2}} + M. \end{aligned}$$

So \(f_n\) is bounded and even

$$\begin{aligned} \sup _{n \in \mathbb {N}} \sup _{t \in (0,\infty )} |f_n(t)| \le {\textstyle \frac{1}{2}} + M. \end{aligned}$$
(8)

Hence all conditions of Lemma A.4 are satisfied for all the \(f_n\).

Let \(u \in H^1(\Omega ,H)\). For all \(n \in \mathbb {N}\), define \(v_n = f_n(u) \, u\). Then \(v_n \in H^1(\Omega ,H)\) with derivatives given by (5) and f replaced by \(f_n\). The Lebesgue dominated convergence theorem and the uniform bounds (8) and (7) imply that \(\lim v_n = v\) and \(\lim \partial _k v_n = \partial _k v\) in \(L_2(\Omega ,H)\) for all \(k \in \{ 1,\ldots ,d \} \). Then the proposition follows from Lemma A.3. \(\square \)

Almost the same arguments show that the norm of an \(H^1(\Omega ,H)\)-function is in the Sobolev space.

Lemma A.5

Let \(u \in H^1(\Omega ,H)\). Then \(\Vert u\Vert _H \in H^1(\Omega )\) and furthermore \(\partial _k \Vert u\Vert _H = {\textrm{Re}}\,({\textrm{sgn}}\,u, \partial _k u)_H\) for all \(k \in \{ 1,\ldots ,d \} \).

Proof

Let \(\varepsilon > 0\). For all \(u \in H^1(\Omega ,H)\), define \(u_\varepsilon :\Omega \rightarrow H\) by \(u_\varepsilon = \sqrt{\Vert u\Vert _H^2 + \varepsilon }\). Let \(\varphi \in C_c^\infty (\Omega )\) and \(k \in \{ 1,\ldots ,d \} \). If \(u \in C^\infty (\Omega ,H) \cap H^1(\Omega ,H)\), then \(u_\varepsilon \in C^\infty (\Omega ,H)\) with classical partial derivative \(\partial _k u_\varepsilon = \frac{{\textrm{Re}}\,(u, \partial _k u)_H}{u_\varepsilon }\). Hence

$$\begin{aligned} - \int \limits _\Omega u_\varepsilon \, \partial _k \varphi = \int \limits _\Omega \frac{{\textrm{Re}}\,(u, \partial _k u)_H}{u_\varepsilon } \, \varphi . \end{aligned}$$
(9)

Using approximation and Lemma A.2, it follows that (9) is valid for all \(u \in H^1(\Omega ,H)\). Finally choose \(\varepsilon = \frac{1}{n}\) and take the limit \(n \rightarrow \infty \). \(\square \)

B. Strict convexity of \(L_p(\Omega ,H)\)

As before, let \((\Omega ,{{\mathcal {B}}},\mu )\) be a \(\sigma \)-finite measure space and H a Hilbert space. In order to make this paper more self-contained, we give a direct proof of the following theorem. At the end of this section, we give information on more general results.

Theorem B.1

Let \(p \in (1,\infty )\) and \(u,v \in L_p(\Omega ,H)\) with \(\Vert u\Vert _p = \Vert v\Vert _p = 1\). If \(\Vert u+v\Vert _p = 2\), then \(u = v\).

For the proof of Theorem B.1, we use three lemmas.

Lemma B.2

Let \(\xi ,\eta \in H\) and suppose that \(\Vert \xi + \eta \Vert _H = \Vert \xi \Vert _H + \Vert \eta \Vert _H\). If \(\eta \ne 0\), then there is a \(\lambda \in [0,\infty )\) such that \(\xi = \lambda \, \eta \).

Proof

The equality implies that \({\textrm{Re}}\,(\xi ,\eta )_H = \Vert \xi \Vert _H \, \Vert \eta \Vert _H\). This gives equality in the Cauchy–Schwarz inequality. Hence there is a \(\lambda \in \mathbb {C}\) such that \(\xi = \lambda \, \eta \). Using again the equality, one deduces that \(|1 + \lambda | = |\lambda | + 1\) and therefore \(\lambda \in [0,\infty )\). \(\square \)

Let \(p,q \in (1,\infty )\) and suppose that \(\frac{1}{p} + \frac{1}{q} = 1\).

Lemma B.3

Let \(a,b \in [0,\infty )\). Then \(a \, b \le \frac{1}{p} \, a^p + \frac{1}{q} \, b^q\) and the equality holds if and only if \(a^p = b^q\).

Proof

This follows from the concavity of the logarithm. \(\square \)

Lemma B.4

Let \(f \in L_p(\Omega )\) and \(g \in L_q(\Omega )\) with \(f \ne 0\) and \(g \ne 0\). Suppose that \(\int _\Omega |f| \, |g| = \Vert f\Vert _{L_p(\Omega )} \, \Vert g\Vert _{L_q(\Omega )}\). Then there exists a \(\lambda > 0\) such that \(|f|^p = \lambda \, |g|^q\) almost everywhere.

Proof

We may assume that \(\Vert f\Vert _{L_p(\Omega )} = 1 = \Vert g\Vert _{L_q(\Omega )}\). Then

$$\begin{aligned} 1 = \int \limits _\Omega |f| \, |g| \le \int \limits _\Omega {\textstyle \frac{1}{p}} \, |f|^p + {\textstyle \frac{1}{q}} \, |g|^q = {\textstyle \frac{1}{p}} \, \Vert f\Vert _{L_p(\Omega )} + {\textstyle \frac{1}{q}} \, \Vert g\Vert _{L_q(\Omega )} = 1. \end{aligned}$$

Hence \(|f| \, |g| = {\textstyle \frac{1}{p}} \, |f|^p + \frac{1}{q} \, |g|^q\) almost everywhere and the lemma follows from Lemma B.3. \(\square \)

Proof of Theorem B.1

Using the triangle inequality on H, twice the Hölder inequality on \(L_p(\Omega )\), and the assumption \(\Vert u+v\Vert _p = \Vert u\Vert _p + \Vert v\Vert _p\), one obtains

$$\begin{aligned} \Vert u + v\Vert _p^p= & {} \int \limits _\Omega \Vert u+v\Vert _H \, \Vert u+v\Vert _H^{p-1}\\\le & {} \int \limits _\Omega \Vert u\Vert _H \, \Vert u+v\Vert _H^{p-1} + \int \limits _\Omega \Vert v\Vert _H \, \Vert u+v\Vert _H^{p-1} \\\le & {} \Big ( \int \limits _\Omega \Vert u\Vert _H^p \Big )^{1/p} \Big ( \int \limits _\Omega \Vert u+v\Vert _H^{(p-1) q} \Big )^{1/q}\\{} & {} + \Big ( \int \limits _\Omega \Vert v\Vert _H^p \Big )^{1/p} \Big ( \int \limits _\Omega \Vert u+v\Vert _H^{(p-1) q} \Big )^{1/q} \\= & {} (\Vert u\Vert _p + \Vert v\Vert _p) \, \Vert u+v\Vert _p^{p/q} = \Vert u+v\Vert _p^{\frac{p}{q} + 1} = \Vert u+v\Vert _p^p. \end{aligned}$$

Hence all three inequalities are equalities. The first gives that there is a null-set \(N_1 \subset \Omega \) such that \(\Vert u+v\Vert _H(x) = \Vert u\Vert _H(x) + \Vert v\Vert _H(x)\) for all \(x \in \Omega {\setminus } N_1\) such that \(\Vert u+v\Vert _H(x) \ne 0\). Recall that \(\Vert u\Vert _p = 1\), so \(\Vert u\Vert _H \ne 0 \in L_p(\Omega )\). Similarly \(\Vert u+v\Vert _H \ne 0 \in L_p(\Omega )\) and therefore \(\Vert u+v\Vert _H^{p-1} \ne 0 \in L_q(\Omega )\). Hence the equality in the first Hölder inequality together with Lemma B.4 gives that there are \(\alpha > 0\) and a null-set \(N_2 \subset \Omega \) such that \(\Vert u\Vert _H^p(x) = \alpha \, \Vert u+v\Vert _H^{(p-1)q}(x)\) for all \(x \in \Omega {\setminus } N_2\). Similarly there are \(\beta > 0\) and a null-set \(N_3 \subset \Omega \) such that \(\Vert v\Vert _H^p(x) = \beta \, \Vert u+v\Vert _H^{(p-1)q}(x)\) for all \(x \in \Omega {\setminus } N_3\). Hence \(\Vert u\Vert _H^p = \gamma \, \Vert v\Vert _H^p\) on \(\Omega \setminus (N_2 \cup N_3)\), where \(\gamma = \frac{\alpha }{\beta }\). Since \(\Vert u\Vert _p = \Vert v\Vert _p = 1\), one deduces that \(\gamma = 1\).

Now let \(x \in \Omega \setminus (N_1 \cup N_2 \cup N_3)\). If \(\Vert u+v\Vert _H(x) = 0\), then subsequently \(\Vert u\Vert _H^p(x) = \alpha \, \Vert u+v\Vert _H^{(p-1)q}(x) = 0\) and \(u(x) = 0\). Similarly \(v(x) = 0\) and therefore \(u(x) = v(x)\). Alternatively, if \(\Vert u+v\Vert _H(x) \ne 0\), then \(v(x) \ne 0\) since \(x \not \in N_3\). Moreover, \(\Vert u(x) + v(x)\Vert _H = \Vert u(x)\Vert _H + \Vert v(x)\Vert _H\) and Lemma B.2 implies that there is a \(\lambda \in [0,\infty )\) such that \(u(x) = \lambda \, v(x)\). But \(\Vert u(x)\Vert _H^p = \Vert v(x)\Vert _H^p\) and hence \(u(x) = v(x)\). Therefore \(u = v\) almost everywhere. \(\square \)

With a small modification, one can prove that \(L_p(\Omega ,E)\) is strictly convex if E is strictly convex and \(p \in (1,\infty )\). In fact, a stronger result than Theorem B.1 is known. The space \(L_p(\Omega ,E)\) is uniformly convex if E is uniformly convex and \(p \in (1,\infty )\). See [10] and the references therein.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, W., ter Elst, A.F.M. & Sauter, M. Nittka’s invariance criterion and Hilbert space valued parabolic equations in \(L_p\). Arch. Math. 121, 731–744 (2023). https://doi.org/10.1007/s00013-023-01944-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-023-01944-0

Keywords

Mathematics Subject Classification

Navigation