Skip to main content
Log in

The Emergence and Preventability of Globally Spreading Antibiotic Resistance: A Literature Review

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Antibiotics have been used in clinical treatment since the mid-20th century. With the use of antibiotics, infant mortality has decreased and average life has increased by about 20 years. However, since the early years of antibiotic use, bacteria have begun to change to reduce or eliminate the effectiveness of antibiotics. Antibiotic resistance is spreading rapidly, but the mechanisms of resistance acquisition, how resistance arises, and how it can be prevented are not clearly understood. The purpose of this review is to compile information on studies of antibiotic resistance and the prevention of resistance acquisition. Spontaneous mutations are an important cause of resistance acquisition in the presence of antibiotics. One of the most commonly used methods to study how these mutations arise is adaptive resistance experiments. Using the information obtained from these experiments, it has been determined that the SOS response plays an important role in the acquisition of resistance mutations. Therefore, the SOS response could be an important target for inhibiting the acquisition of antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abat, C., Fournier, P.E., Jimeno, M.T., Rolain, J.M., and Raoult, D., Extremely and pandrug-resistant bacteria extra-deaths: Myth or reality?, Eur. J. Clin. Microbiol. Infect. Dis., 2018, vol. 37, no. 9, pp. 1687–1697. https://doi.org/10.1007/s10096-018-3300-0

    Article  PubMed  Google Scholar 

  2. Agyare, C., Etsiapa Boamah, V., Ngofi Zumbi, C., and Boateng Osei, F., Antibiotic use in poultry production and its effects on bacterial resistance, IntechOpen, 2018. https://doi.org/10.5772/intechopen.73725

  3. Aminov, R.I., A brief history of the antibiotic era: Lessons learned and challenges for the future, Front. Microbiol., 2010, vol. 1, p. 134. https://doi.org/10.3389/fmicb.2010.00134

    Article  PubMed  PubMed Central  Google Scholar 

  4. Appelbaum, P.C., The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus, Clin. Microbiol. Infect., 2006, vol. 12, no. 1, pp. 16–23. https://doi.org/10.1111/j.1469-0691.2006.01344.x

    Article  CAS  PubMed  Google Scholar 

  5. Arias, C.A., Panesso, D., McGrath, D.M., Qin, X., et al., Genetic basis for in vivo daptomycin resistance in enterococci, N. Engl. J. Med., 2011, vol. 365, no. 10, pp. 892–900. https://doi.org/10.1056/nejmoa1011138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arnold, B.J., Huang, I.T., and Hanage, W.P., Horizontal gene transfer and adaptive evolution in bacteria, Nat. Rev. Microbiol., 2021, vol. 20, pp. 206–218. https://doi.org/10.1038/s41579-021-00650-4

    Article  CAS  PubMed  Google Scholar 

  7. Barr, V., Barr, K., Millar, M.R., and Lacey, R.W., β-Lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus, J. Antimicrob. Chemother., 1986, vol. 17, no. 4, pp. 409–413. https://doi.org/10.1093/jac/17.4.409

    Article  CAS  PubMed  Google Scholar 

  8. Baym, M., Lieberman, T.D., Kelsic, E.D., Chait, R., et al., Spatiotemporal microbial evolution on antibiotic landscapes, Science, 2016, vol. 353, no. 6304, pp. 1147–1151. https://doi.org/10.1126/science.aag0822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blair, J.M., Webber, M.A., Baylay, A.J., and Ogbolu, D.O., and Piddock, L.J., Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 2015, vol. 13, pp. 42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  10. Blázquez, J., Couce, A., Rodríguez-Beltrán, J., and Rodríguez-Rojas, A., Antimicrobials as promoters of genetic variation, Curr. Opin. Microbiol., 2012, vol. 15, no. 5, pp. 561–569. https://doi.org/10.1016/j.mib.2012.07.007

    Article  PubMed  Google Scholar 

  11. Bore, E., Hébraud, M., Chafsey, I., Chambon, C., et al., Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses, Microbiology, 2007, vol. 153, no. 4, p. 935–946. https://doi.org/10.1099/mic.0.29288-0

    Article  CAS  PubMed  Google Scholar 

  12. Briales, A., Rodriguez-Martinez, J.M., Velasco, C., Machuca, J., et al., Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation, J. Antimicrob. Chemother., 2012, vol. 67, no. 12, p. 2854–2859. https://doi.org/10.1093/jac/dks326

    Article  CAS  PubMed  Google Scholar 

  13. Brito, I.L., Examining horizontal gene transfer in microbial communities, Nat. Rev. Microbiol., 2021, vol. 19, no 7, p. 442–453. https://doi.org/10.1038/s41579-021-00534-7

    Article  CAS  PubMed  Google Scholar 

  14. Burnham, J.P., Olsen, M.A., and Kollef, M.H., Re-estimating annual deaths due to multidrug-resistant organism infections, Infect. Control Hosp. Epidemiol., 2019, vol. 40, no. 1, pp. 112–113. https://doi.org/10.1017/ice.2018.304

    Article  PubMed  Google Scholar 

  15. Chambers, H.F. and DeLeo, F.R., Waves of resistance: Staphylococcus aureus in the antibiotic era, Nat. Rev. Microbiol., 2009, vol. 7, no. 9, pp. 629–641. https://doi.org/10.1038/nrmicro2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chellat, M.F., Raguž, L., and Riedl, R., Targeting antibiotic resistance, Angew. Chem., Int. Ed., 2016, vol. 55, no. 23, pp. 6600–6626. https://doi.org/10.1002/anie.201506818

    Article  CAS  Google Scholar 

  17. Crane, J.K., Alvarado, C.L., and Sutton, M.D., Role of the SOS response in the generation of antibiotic resistance in vivo, Antimicrob. Agents Chemother., 2021, vol. 65, no. 7, pp. 1–17. https://doi.org/10.1128%2FAAC.00013-21

    Article  Google Scholar 

  18. Cully, M., Public health: The politics of antibiotics, Nature, 2014, vol. 509, pp. 16–17. https://doi.org/10.1038/509S16a

    Article  CAS  Google Scholar 

  19. Darcan, C. and Kahyaoglu, M., The effect of some boron derivatives on Kanamycin Resistance and survival of E. coli and P. aeruginosa in Lake Water, Biomed. Environ. Sci., 2012, vol. 25, no. 4, pp. 476–482. https://doi.org/10.3967/0895-3988.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  20. Delcour, A.H., Outer membrane permeability and antibiotic resistance, Biochim. Biophys. Acta, 2009, vol. 1794, no. 5, pp. 808–816. https://doi.org/10.1016/j.bbapap.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  21. Dersch, P., Khan, M.A., Mühlen, S., and Görke, B., Roles of regulatory RNAs for antibiotic resistance in bacteria and their potential value as novel drug targets, Front. Microbiol., 2017, vol. 8, p. 803. https://doi.org/10.3389/fmicb.2017.00803

    Article  PubMed  PubMed Central  Google Scholar 

  22. Diaz-Diaz, S. and Recacha, E., MacHuca, J., Garcia-Duque, A., et al., Synergistic quinolone sensitization by targeting the recA SOS response gene and oxidative stress, Antimicrob. Agents Chemother., 2021, vol. 65, no. 4, pp. 1–11. https://doi.org/10.1128/aac.02004-20

    Article  CAS  Google Scholar 

  23. Dong, T. and Schellhorn, H.E., Role of RpoS in virulence of pathogens, Infect. Immun., 2010, vol. 78, no. 3, pp. 887–897. https://doi.org/10.1128/iai.00882-09

    Article  CAS  PubMed  Google Scholar 

  24. Doucet-Populaire, F., Trieu-Cuot, P., Dosbaa, I., Andremont, A., et al., Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice, Antimicrob. Agents Chemother., 1991, vol. 35, no. 1, p. 185–187. https://doi.org/10.1128/aac.35.1.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du, B., Olson, C.A., and Sastry, A., v., Fang, X., et al., Adaptive laboratory evolution of Escherichia coli under acid stress, Microbiology, 2020, vol. 166, no. 2, pp. 141–148. https://doi.org/10.1099/mic.0.000867

    Article  CAS  PubMed  Google Scholar 

  26. Garau, J., Xercavins, M., Rodríguez-Carballeira, M., Gómez-Vera, J.R., et al., Emergence and dissemination of quinolone-resistant Escherichia coli in the community, Antimicrob. Agents Chemother., 1999, vol. 43, no. 11, pp. 2736–2741. https://doi.org/10.1128/aac.43.11.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutierrez, A., Laureti, L., Crussard, S., Abida, H., et al., β‑Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity, Nat. Commun., 2013, vol. 4, pp. 1–9. https://doi.org/10.1038/ncomms2607

    Article  CAS  Google Scholar 

  28. Gutiérrez, R., Ram, Y., Berman, J., de Sousa, K.C.M., et al., Adaptive resistance mutations at suprainhibitory concentrations independent of SOS mutagenesis, Mol. Biol. Evol., 2021, vol. 38, no. 10, pp. 4095–4115. https://doi.org/10.1093/molbev/msab196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoeksema, M., Jonker, M.J., and Brul, S., ter Kuile, B. H., Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli, BMC Genomics, 2019, vol. 20, p. 1–14. https://doi.org/10.1186%2Fs12864-019-5648-7

    Article  Google Scholar 

  30. Hosain, Z., Kabir, S.M.L., and Kamal, M., Antimicrobial uses for livestock production in developing countries, Vet. World, 2021, vol. 14, no. 1, pp. 210–221. https://doi.org/10.14202/vetworld.2021.210-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Howden, B.P., McEvoy, C.R.E., Allen, D.L., Chua, K., et al., Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR, PLoS Pathog., 2011, vol. 7, no. 11, pp. 1–15. https://doi.org/10.1371/journal.ppat.1002359

    Article  CAS  Google Scholar 

  32. Huang, F., Motlekar, N.A., Burgwin, C.M., Napper, A.D., et al., Identification of specific inhibitors of human, RAD51 recombinase using high-throughput screening, ACS Chem. Biol., 2011, vol. 6, no. 6, p. 628–635. https://doi.org/10.1021/cb100428c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hutchings, M., Truman, A., Wilkinson, B., et al., Antibiotics: Past, present and future, Curr. Opin. Microbiol., 2019, vol. 51, pp. 72–80. https://doi.org/10.1016/j.mib.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  34. Jevons, M.P., “Celbenin”—resistant Staphylococci, Br. Med. J., 1961, vol. 1, no. 5219, pp. 124–125.

    Article  PubMed Central  Google Scholar 

  35. Jo, S.B., Shin, C.H., Shin, Y.J., Kim, P.H., et al., Heavy metal and antibiotic co-resistance in Vibrio parahaemolyticus isolated from shellfish, Mar. Pollut. Bull., 2020, vol. 156, p. 111246. https://doi.org/10.1016/j.marpolbul.2020.111246

    Article  CAS  PubMed  Google Scholar 

  36. Jutkina, J., Marathe, N.P., Flach, C.F., and Larsson, D.G.J., Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations, Sci. Total Environ., 2018, vols. 616–617, pp. 172–178. https://doi.org/10.1016/j.scitotenv.2017.10.312

    Article  CAS  PubMed  Google Scholar 

  37. Kang, W., Zhang, Y.-J., Shi, X., He, J.-Z., and Hu, H.-W., Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil, Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 29314–29324. https://doi.org/10.1007/s11356-018-2978-y

    Article  CAS  Google Scholar 

  38. Knöppel, A., Näsvall, J., and Andersson, D.I., Evolution of antibiotic resistance without antibiotic exposure, Antimicrob. Agents Chemother., 2017, vol. 61, no. 11, pp. 1–5. https://doi.org/10.1128/aac.01495-17

    Article  CAS  Google Scholar 

  39. Kohanski, M.A., DePristo, M.A., and Collins, J.J., Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis, Mol. Cell, 2010, vol. 37, no. 3, pp. 311–320. https://doi.org/10.1016/j.molcel.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kucukyildirim, S., Whole-population genomic sequencing reveals the mutational profiles of the antibiotic-treated Escherichia coli populations, Biologia, 2022, vol. 77, pp. 525–531. https://doi.org/10.1007/s11756-021-00959-8

    Article  CAS  Google Scholar 

  41. Kuile, B.H., Kraupner, N., and Brul, S., The risk of low concentrations of antibiotics in agriculture for resistance in human health care, FEMS Microbiol. Lett., 2016, vol. 363, no. 19, p. 210. https://doi.org/10.1093/femsle/fnw210

    Article  CAS  Google Scholar 

  42. Kurenbach, B., Hill, A.M., Godsoe, W., van Hamelsveld, S., and Heinemann, J.A., Agrichemicals and antibiotics in combination increase antibiotic resistance evolution, PeerJ, 2018, vol. 6, p. e5801. https://doi.org/10.7717%2Fpeerj.5801

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lalaouna, D., Eyraud, A., Chabelskaya, S., Felden, B., and Massé, E., Regulatory RNAs involved in bacterial antibiotic resistance, PLoS Pathog., 2014, vol. 10, p. e1004299. https://doi.org/10.1371/journal.ppat.1004299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lamrabet, O., Martin, M., Lenski, R.E., and Schneider, D., Changes in intrinsic antibiotic susceptibility during a long-term evolution experiment with escherichia coli, MBio, 2019, vol. 10, no. 2, pp. 1–12. https://doi.org/10.1128/mbio.00189-19

    Article  CAS  Google Scholar 

  45. Lázár, V., Pal Singh, G., Spohn, R., Nagy, I., et al., Bacterial evolution of antibiotic hypersensitivity, Mol. Syst. Biol., 2013, vol. 9, p. 700. https://doi.org/10.1038/msb.2013.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, J.-Y., Seo, J., Kim, E.-S., Lee, H.-S., and Kim, P., Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling, Biotechnol. Lett., 2013, vol. 35, no. 5, pp. 709–717. https://doi.org/10.1007/s10529-012-1135-9

    Article  CAS  PubMed  Google Scholar 

  47. Léger, L., Budin-Verneuil, A., Cacaci, M., Benachour, A., et al., β-Lactam exposure triggers reactive oxygen species formation in Enterococcus faecalis via the respiratory chain component DMK, Cell Rep., 2019, vol. 29, no. 8, pp. 2184–2191. https://doi.org/10.1016/j.celrep.2019.10.080

    Article  CAS  PubMed  Google Scholar 

  48. Lerminiaux, N.A. and Cameron, A.D.S., Horizontal transfer of antibiotic resistance genes in clinical environments, Can. J. Microbiol., 2019, vol. 65, pp. 34–44. https://doi.org/10.1139/cjm-2018-0275

    Article  CAS  PubMed  Google Scholar 

  49. Li, G.Q., Quan, F., Qu, T., Lu, J., et al., Sublethal vancomycin-induced ROS mediating antibiotic resistance in Staphylococcus aureus, Biosci. Rep., 2015, vol. 35, no. 6, p. 279. https://doi.org/10.1042/bsr20140167

    Article  Google Scholar 

  50. Li, M., Liu, Q., Teng, Y., Ou, L., et al., The resistance mechanism of Escherichia coli induced by ampicillin in laboratory, Infect. Drug Resist., 2019, vol. 12, pp. 2853–2863. https://doi.org/10.2147%2FIDR.S221212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, X., Gu, A.Z., Zhang, Y., Xie, B., et al., Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis, J. Hazard. Mater., 2019, vol. 369, pp. 9–16. https://doi.org/10.1016/j.jhazmat.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  52. Lindsey, H.A., Gallie, J., Taylor, S., and Kerr, B., Evolutionary rescue from extinction is contingent on a lower rate of environmental change, Nature, 2013, vol. 494, pp. 463–467. https://doi.org/10.1038/nature11879

    Article  CAS  PubMed  Google Scholar 

  53. Lowy, F.D., Antimicrobial resistance: The example of Staphylococcus aureus, J. Clin. Invest., 2003, vol. 111, no. 9, pp. 1265–1273. https://doi.org/10.1172/JCI18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. MacLean, R.C. and Millan, A.S., The evolution of antibiotic resistance, Science, 2019, vol. 365, no. 6458, pp. 1082–1083. https://doi.org/10.1126/science.aax3879

  55. Maeda, T., Horinouchi, T., Sakata, N., Sakai, A., and Chikara, F., High-throughput identification of the sensitivities of an Escherichia coli recA mutant strain to various chemical compounds, J. Antibiot., 2019, vol. 72, pp. 566–573. https://doi.org/10.1038/s41429-019-0160-5

    Article  CAS  Google Scholar 

  56. Maeda, T., Iwasawa, J., Kotani, H., Sakata, N., et al., High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli, Nat. Commun., 2020, vol. 11, no, 11, p. 1–13. https://doi.org/10.1038/s41467-020-19713-w

    Article  CAS  Google Scholar 

  57. Malhotra-Kumar, S., Xavier, B.B., Das, A.J., Lammens, C., et al., Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid, Lancet Infect. Dis., 2016, vol. 16, no. 3, p. 283–284. https://doi.org/10.1016/S1473-3099(16)00012-8

    Article  CAS  PubMed  Google Scholar 

  58. Mandin, P. and Gottesman, S., Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA, EMBO J., 2010, vol. 29, no. 18, pp. 3094–3107. https://doi.org/10.1038/emboj.2010.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manna, M.S., Tamer, Y.T., Gaszek, I., Poulides, N., et al., A trimethoprim derivative impedes antibiotic resistance evolution, Nat. Commun., 2021, vol. 12, pp. 1–10. https://doi.org/10.1038/s41467-021-23191-z

    Article  CAS  Google Scholar 

  60. Mans, R., Daran, J.M.G., and Pronk, J.T., Under pressure: Evolutionary engineering of yeast strains for improved performance in fuels and chemicals production, Curr. Opin. Biotechnol., 2018, vol. 50, pp. 47–56. https://doi.org/10.1016/j.copbio.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  61. Marti, E., Variatza, E., and Balcazar, J.L., The role of aquatic ecosystems as reservoirs of antibiotic resistance, Trends Microbiol., 2014, vol. 22, no. 1, pp. 36–41. https://doi.org/10.1016/j.tim.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  62. Martinez, J.L. and Baquero, F., Mutation frequencies and antibiotic resistance, Antimicrob. Agents Chemother., 2000, vol. 44, no. 7, pp. 1771–1777. https://doi.org/10.1128/aac.44.7.1771-1777.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martínez, J.L. and Rojo, F., Metabolic regulation of antibiotic resistance, FEMS Microbiol. Rev., 2011, vol. 35, no. 5, pp. 768–789. https://doi.org/10.1111/j.1574-6976.2011.00282.x

    Article  CAS  PubMed  Google Scholar 

  64. Mo, C.Y., Manning, S.A., Roggiani, M., Culyba, M.J., et al., Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics, MSphere, 2016, vol. 1, no. 4, pp. 1–15. https://doi.org/10.1128/msphere.00163-16

    Article  Google Scholar 

  65. Nishino, K., Yamasaki, S., Hayashi-Nishino, M., and Yamaguchi, A., Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli, J. Antimicrob. Chemother., 2011, vol. 66, no. 2, pp. 291–296. https://doi.org/10.1093/jac/dkq420

    Article  CAS  PubMed  Google Scholar 

  66. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, WHO, 2014. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis

  67. Pereira, R., Wei, Y., Mohamed, E., Radi, M., et al., Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae, Metab. Eng., 2019, vol. 56, pp. 130–141. https://doi.org/10.1016/j.ymben.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  68. Pinilla-Redondo, R., Cyriaque, V., Jacquiod, S., Sørensen, S.J., and Riber, L., Monitoring plasmid-mediated horizontal gene transfer in microbiomes: Recent advances and future perspectives, Plasmid, 2018, vol. 99, pp. 56–67. https://doi.org/10.1016/j.plasmid.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  69. Recacha, E., Machuca, J., Díaz-Díaz, S., García-Duque, A., et al., Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant Escherichia coli, J. Antimicrob. Chemother., 2019, vol. 74, no. 1, pp. 66–73. https://doi.org/10.1093/jac/dky407

    Article  CAS  PubMed  Google Scholar 

  70. Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria, AIMS Microbiol., 2018, vol. 4, no. 3, pp. 482–501. https://doi.org/10.3934/microbiol.2018.3.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodríguez-Rosado, A.I., Valencia, E.Y., Rodríguez-Rojas, A., Costas, C., et al., N-acetylcysteine blocks SOS induction and mutagenesis produced by fluoroquinolones in Escherichia coli, J. Antimicrob. Chemother., 2019, vol. 74, no. 8, pp. 2188–2196.https://doi.org/10.1093/jac/dkz210

  72. Romandini, A., Pani, A., Schenardi, P.A., Angela, G., et al., Antibiotic resistance in pediatric infections: Global emerging threats, predicting the near future, Antibiotics, 2021, vol. 10, no. 4, p. 393. https://doi.org/10.3390/antibiotics10040393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sahni, A., Hajjari, M., Raheb, J., Foroughmand, A.M., and Asgari, M., The non-coding RNA rprA can increase the resistance to ampicillin in Escherichia coli, Microb. Pathog., 2019, vol. 129, pp. 266–270. https://doi.org/10.1016/j.micpath.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  74. Sandberg, T.E., Salazar, M.J., Weng, L.L., Palsson, B.O., and Feist, A.M., The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology, Metab. Eng., 2019, vol. 56, pp. 1–16. https://doi.org/10.1016/j.ymben.2019.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sandegren, L., Low sub-minimal inhibitory concentrations of antibiotics generate new types of resistance, Sustainable Chem. Pharm., 2019, vol. 11, pp. 46–48. https://doi.org/10.1016/j.scp.2018.12.006

    Article  Google Scholar 

  76. Saunders, N.J., Trivedi, U.H., Thomson, M.L., Doig, C., et al., Deep resequencing of serial sputum isolates of Mycobacterium tuberculosis during therapeutic failure due to poor compliance reveals stepwise mutation of key resistance genes on an otherwise stable genetic background, J. Infect., 2011, vol. 62, no. 3, pp. 212–217. https://doi.org/10.1016/j.jinf.2011.01.003

    Article  PubMed  Google Scholar 

  77. Serwecińska, L., Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health, Water, 2020, vol. 12, no. 12, pp. 1–17. https://doi.org/10.3390/w12123313

    Article  CAS  Google Scholar 

  78. Sevik, H., Cetin, M., Ozel, H.B., and Akarsu, H., Zeren Cetin, I., Analyzing of usability of tree-rings as biomonitors for monitoring heavy metal accumulation in the atmosphere in urban area: A case study of cedar tree (Cedrus sp.), Environ. Monit. Assess, 2020, vol. 192, no. 1, pp. 1–11. https://doi.org/10.1007/s10661-019-8010-2

    Article  CAS  Google Scholar 

  79. Summers, A.O., Wireman, J., Vimy, M.J., Lorscheider, F.L., et al., Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates, Antimicrob. Agents Chemother., 1993, vol. 37, no. 4, pp. 825–834. https://doi.org/10.1128/aac.37.4.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, D., Jeannot, K., Xiao, Y., and Knapp, C.W., Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance, Front. Microbiol., 2019, vol. 10, p. 1933. https://doi.org/10.3389/fmicb.2019.01933

    Article  PubMed  PubMed Central  Google Scholar 

  81. Suzuki, S., Horinouchi, T., and Furusawa, C., Suppression of antibiotic resistance acquisition by combined use of antibiotics, J. Biosci. Bioeng., 2015, vol. 120, no. 4, pp. 467–469. https://doi.org/10.1016/j.jbiosc.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki, S., Horinouchi, T., and Furusawa, C., Acceleration and suppression of resistance development by antibiotic combinations, BMC Genomics, 2017, vol. 18, no. 1, pp. 1–10. https://doi.org/10.1186/s12864-017-3718-2

    Article  CAS  Google Scholar 

  83. Tang, J., Zhang, J., Ren, L., Zhou, Y., et al., Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution, J. Environ. Manage, 2019, vol. 242, pp. 121–130. https://doi.org/10.1016/j.jenvman.2019.04.061

    Article  CAS  PubMed  Google Scholar 

  84. Toprak, E., Veres, A., Michel, J.-B., Chait, R., et al., Evolutionary paths to antibiotic resistance under dynamically sustained drug selection, Nat. Genet., 2012, vol. 44, no. 1, pp. 101–105. https://doi.org/10.1038%2Fng.1034

    Article  CAS  Google Scholar 

  85. Valencia, A.O., Braz, V.S., Magalhães, M., and Galhardo, R.S., Role of error-prone DNA polymerases in spontaneous mutagenesis in Caulobacter crescentus, Genet. Mol. Biol., 2020, vol. 43, no. 1, p. e20180283. https://doi.org/10.1590/1678-4685-gmb-2018-0283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Viswanathan, V.K., Off-label abuse of antibiotics by bacteria, Gut Microbes, 2014, vol. 5, no. 1, pp. 3–4. https://doi.org/10.4161%2Fgmic.28027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Z., Zhang, P., Ding, X., Wang, J., et al., Co-delivery of ampicillin and β-lactamase inhibitor by selenium nanocomposite to achieve synergistic anti-infective efficiency through overcoming multidrug resistance, Chem. Eng. J., 2021, vol. 414, p. 128908. https://doi.org/10.1016/j.cej.2021.128908

    Article  CAS  Google Scholar 

  88. Webber, M.A. and Piddock, L.J.V., The importance of efflux pumps in bacterial antibiotic resistance, J. Antimicrob. Chemother., 2003, vol. 51, no. 1, p. 9–11. https://doi.org/10.1093/jac/dkg050

    Article  CAS  PubMed  Google Scholar 

  89. Wright, G.D., Bacterial resistance to antibiotics: Enzymatic degradation and modification, Adv. Drug Delivery Rev., 2005, vol. 57, no. 10, pp. 1451–1470. https://doi.org/10.1016/j.addr.2005.04.002

    Article  CAS  Google Scholar 

  90. Xiao, X., Zeng, F., Li, R., Liu, Y., and Wang, Z., Subinhibitory concentration of colistin promotes the conjugation frequencies of Mcr-1- and blaNDM-5-positive plasmids, Microbiol. Spectrum, 2022, vol. 10, no. 2, p. 1–9. https://doi.org/10.1128/spectrum.02160-21

    Article  CAS  Google Scholar 

  91. Yakimov, A., Bakhlanova, I., and Baitin, D., Targeting evolution of antibiotic resistance by SOS response inhibition, Comput. Struct. Biotechnol. J., 2021, vol. 19, pp. 777–783. https://doi.org/10.1016/j.csbj.2021.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, S., Wang, Y., Shen, F., Fang, H., and Yu, Y., Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli, Sci. Total Environ., 2022, vol. 815, p. 152885. https://doi.org/10.1016/j.scitotenv.2021.152885

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Q., Lambert, G., Liao, D., Kim, H., et al., Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments, Science, 2011, vol. 333, no. 6050, pp. 1764–1767. https://doi.org/10.1126/science.1208747

    Article  CAS  PubMed  Google Scholar 

  94. Zhuang, M., Achmon, Y., Cao, Y., Liang, X., et al., Distribution of antibiotic resistance genes in the environment, Environ. Pollut., 2021, vol. 285, no. 2, p. 117402. https://doi.org/10.1016/j.envpol.2021.117402

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Türkyılmaz.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest in the publication.

The manuscript does not involve any animal study. Therefore, this study does not require ethical approval.

AUTHOR CONTRIBUTION

All authors contributed to the study conception and design. Literature review, writing, review, and editing were performed by OT and CD. The first draft of the manuscript was written by OT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman Türkyılmaz, Cihan Darcan The Emergence and Preventability of Globally Spreading Antibiotic Resistance: A Literature Review. Biol Bull Rev 13, 578–589 (2023). https://doi.org/10.1134/S2079086423060154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423060154

Keywords:

Navigation