Skip to main content
Log in

Recent contributions of molecular population genetic and phylogenetic studies to classic biological control of weeds

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The use of molecular techniques in biological studies has rapidly grown and the tools have become more powerful, widely available, as well as cheaper and easier to implement. For classical biological control of weeds, molecular population genetics can uncover information about invasions that was recently unknowable but can be critical to improving control success, including clarifying taxonomy, hybridization and cryptic species, host plant evolutionary relationships with other plant species, and population structure and origin of invasions. This review provides recent examples of uses of molecular population genetics and phylogenetics that have improved our knowledge of target species, hoping to inspire and guide researchers as they begin planning a classical biological control of weeds program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerfield JR, Keil DJ, Hodgson WC, Simmons MP, Fehlberg SD, Funk VA (2020) Thistle be a mess: untangling the taxonomy of Cirsium (Cardueae: Compositae) in North America. J Syst Evol 58:881–912

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Amsellem L, Chevallier MH, Hossaert-McKey M (2001) Ploidy level of the invasive weed Rubus alceifolius (Rosaceae) in its native range and in areas of introduction. Plant Syst Evol 228:171–179

    Article  Google Scholar 

  • Burrell AM, Pepper AE, Hodnett G, Goolsby JA, Overholt WA, Racelis AE, Diaz R, Klein PE (2015) Exploring origins, invasion history and genetic diversity of Imperata cylindrica (L.) P. Beauv. (Cogongrass) in the United States using genotyping by sequencing. Mol Ecol 24:2177–2193

    Article  CAS  PubMed  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula). Weed Sci 54:59–68

    Article  CAS  Google Scholar 

  • Crawford LA, Koscinski D, Keyghobadi N (2012) A call for more transparent reporting of error rates: the quality of AFLP data in ecological and evolutionary research. Mol Ecol 21:5911–5917

    Article  PubMed  Google Scholar 

  • Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan SP, Jones AG (2019) The future of parentage analysis: from microsatellites to SNPs and beyond. Mol Ecol 28:544–567

    Article  PubMed  Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69

    Article  PubMed  Google Scholar 

  • Gaskin JF, Bon MC, Cock MJ, Cristofaro M, De Biase A, De Clerck-Floate R, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21

    Article  CAS  Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci 99:11256–11259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskin JF, Schwarzländer M, Williams L, Gerber E, Hinz HL (2012) Minimal genetic diversity in the facultatively outcrossing perennial pepperweed (Lepidium latifolium) invasion. Biol Invasions 14:1797–1807

    Article  Google Scholar 

  • Gaskin JF, Littlefield JL (2017) Invasive russian knapweed (Acroptilon repens) creates large patches almost entirely by rhizomic growth. Invasive Plant Sci Manag 10:119–124

    Article  Google Scholar 

  • Gaskin JF, Andreas J, Grewell BJ, Haefliger P, Harms NE (2021) Diversity and origins of Butomus umbellatus (flowering rush) invasion in North America. Aquat Bot 173:103400

    Article  Google Scholar 

  • Gaskin JF, Cortat G, West NM (2023) Vegetative versus sexual reproduction varies widely in Convolvulus arvensis across western North America. Biol Invasions 25:2219–2229

  • Harms NE, Cronin JT, Diaz R, Winston RL (2020) A review of the causes and consequences of geographical variability in weed biological control successes. Biol Control 151:104398

    Article  Google Scholar 

  • Hinz HL, Winston RL, Schwarzländer M (2019) How safe is weed biological control? A global review of direct nontarget attack. Q Rev Biol 94:1–27

    Article  Google Scholar 

  • Hinz HL, Winston RL, Schwarzländer M (2020) A global review of target impact and direct nontarget effects of classical weed biological control. Curr Opin Insect Sci 38:48–54

    Article  PubMed  Google Scholar 

  • Hoelmer KA, Sforza RF, Cristofaro M (2023) Accessing biological control genetic resources: the United States perspective. BioControl 68:269–280

    Article  PubMed  Google Scholar 

  • Hokkanen HM, Pimentel D (1989) New associations in biological control: theory and practice. Can Entomol 121:829–840

    Article  Google Scholar 

  • Hu T, Chitnis N, Monos D, Dinh A (2021) Next-generation sequencing technologies: an overview. Hum Immunol 82:801–811

    Article  CAS  PubMed  Google Scholar 

  • Kelch DG, McClay A (2004) Putting the phylogeny into the centrifugal phylogenetic method. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (Eds.), Proceedings of the XI international symposium on biological control of weeds, CSIRO Entomology, Canberra, pp. 287–291

  • Kirschner P, Arthofer W, Pfeifenberger S, Záveská E, Schönswetter P, Frajman B, Gamisch A, Hilpold A, Paun O, Sanmartín I, Trucchi E, Steiner FM, Schlick-Steiner BC (2021) Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework. Sci Rep-UK 11(1):3978

    Article  CAS  Google Scholar 

  • Kwong RM, Broadhurst LM, Keener BR, Coetzee JA, Knerr N, Martin G (2017) Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla–implications for biological control in Australia and South Africa. Biol Control 112:10–19

    Article  Google Scholar 

  • Leipold M, Tausch S, Hirtreiter PP, Reisch C (2020) Sampling for conservation genetics: how many loci and individuals are needed to determine the genetic diversity of plant populations using AFLP? Conserv Genet Resour 12:99–108

    Article  Google Scholar 

  • Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8:1461–1470

    Article  Google Scholar 

  • McCartney MA, Mallez S, Gohl DM (2019) Genome projects in invasion biology. Conserv Genet 20:1201–1222

    Article  CAS  Google Scholar 

  • McCulloch GA, Mauda EV, Chari LD, Martin GD, Gurdasani K, Morin L, Walter GH, Raghu S (2020) Genetic diversity and morphological variation in African boxthorn (Lycium ferocissimum)–characterising the target weed for biological control. Biol Control 143:104206

    Article  CAS  Google Scholar 

  • McCulloch GA, Madeira PT, Makinson JR, Dutoit L, Blair Z, Walter GH, Nawaz M, Purcell MF (2021) Phylogenomics resolves the invasion history of Acacia auriculiformis in Florida. J Biogeogr 48:453–464

    Article  Google Scholar 

  • McFadyen REC (1998) Biological control of weeds. Annu Rev Entomol 43:369–393

    Article  CAS  PubMed  Google Scholar 

  • Minteer CR, Smith MC, Madeira P, Goosem C, Zonneveld R, Makinson J, Wheeler GS, Purcell M (2020) Is biological control for earleaf acacia (Acacia auriculiformis) feasible in the United States? Biocontrol Sci Tech 30:1275–1299

    Article  Google Scholar 

  • Müller-Schärer H, Bouchemousse S, Litto M, McEvoy PB, Roderick GK, Sun Y (2020) How to better predict long-term benefits and risks in weed biocontrol: an evolutionary perspective. Curr Opin Insect Sci 38:84–91

    Article  PubMed  Google Scholar 

  • Nazareno AG, Bemmels JB, Dick CW, Lohmann LG (2017) Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17:1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Overholt WA, Hidayat P, Le Ru B, Takasu K, Goolsby JA, Racelis A, Burrell AM, Amalin D, Agum W, Njaku M, Pallangyo B (2016) Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA. Florida Entomol 99:734–739

    Article  Google Scholar 

  • Pourghorban Z, Salmaki Y, Weigend M (2020) Phylogenetic relationships within the subtribe Cynoglossinae (Cynoglossoideae: Boraginaceae): new insights from nuclear and plastid DNA sequence data. Plant Syst Evol 306:45

  • Pyšek P (1997) Clonality and plant invasions: can a trait make a difference? In: de Kroon H, Van Groenendael JM (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp 405–427

    Google Scholar 

  • Reid MK, Naidu P, Paterson ID, Mangan R, Coetzee JA (2021) Population genetics of invasive and native Nymphaea mexicana Zuccarini: taking the first steps to initiate a biological control programme in South Africa. Aquat Bot 171:103372

    Article  Google Scholar 

  • Roley SS, Newman RM (2006) Developmental performance of the milfoil weevil, Euhrychiopsis lecontei (Coleoptera: Curculionidae), on northern watermilfoil, Eurasian watermilfoil, and hybrid (northern× Eurasian) watermilfoil. Environ Entomol 35:121–126

    Article  Google Scholar 

  • Salas A, Carracedo Á, Macaulay V, Richards M, Bandelt HJ (2005) A practical guide to mitochondrial DNA error prevention in clinical, forensic, and population genetics. Biochem Biophys Res Commun 335:91–899

    Article  Google Scholar 

  • Saunders IW, Brohede J, Hannan GN (2007) Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference. Genomics 90:291–296

    Article  CAS  PubMed  Google Scholar 

  • Schwarzländer M, Moran VC, Raghu S (2018) Constraints in weed biological control: contrasting responses by implementing nations. BioControl 63:313–317

  • Sheppard AW, van Klinken RD, Heard TA (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biol Control 35:215–226

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/. Accessed May 2023

  • Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37

    Article  Google Scholar 

  • Suyama Y, Hirot SK, Matsuo A, Tsunamoto Y, Mitsuyuki C, Shimura A, Okano K (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecol Res 37:171–181

    Article  CAS  Google Scholar 

  • Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) Review of the systematics of Scrophulariaceae s.l. and their current disposition. Aust Syst Bot 19:289–307

    Article  Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Article  Google Scholar 

  • Ward SM, Gaskin JF, Wilson LM (2008) Ecological genetics of plant invasion: what do we know? Invasive Plant Sci Manag 1:98–109

    Article  Google Scholar 

  • West NM, Gaskin JF, Milan J, Rand TA (2023) High genetic diversity in the landscape suggests frequent seedling recruitment by Euphorbia virgata Waldst. & Kit. (leafy spurge) in the northern USA. Biol Invasions 25:645–652

    Article  Google Scholar 

Download references

Acknowledgements

There are no acknowledgements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gaskin.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Human and animals rights

The research involved no human participants and/or animals for which consent would be required.

Additional information

Handling Editior: Marc Schwarzländer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaskin, J. Recent contributions of molecular population genetic and phylogenetic studies to classic biological control of weeds. BioControl (2023). https://doi.org/10.1007/s10526-023-10230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10526-023-10230-5

Keywords

Navigation