Skip to main content
Log in

Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Yes.

Code availability

Not applicable.

Abbreviations

AGI:

Alpha-glucosidase inhibitors

AMPK:

AMP-Activated Protein Kinase

ASCs:

Adipose-derived mesenchymal stromal cells

BCL-1:

B-cell lymphoma 2

BM-MSCs:

Bone marrow-derived mesenchymal stromal cells

CHIP:

Carboxyl terminus of Hsc70 interacting protein

CKD:

Chronic kidney disease

DN:

Diabetic nephropathy

DPP:

Dipeptidyl-peptidase

DYRK1A:

Dual-specificity tyrosine-regulated kinase 1A

FBG:

Fasting blood glucose

FFA:

Free fatty acid

GIP:

Glucose-dependent insulinotropic polypeptide

GLP:

Glucagon-like polypeptide

GLP-1Ra:

GLP-1 receptor agonists

HbA1C:

Glycated hemoglobin

IPCs:

Insulin-producing cells

IRS-1:

insulin receptor substrate-1

MSC:

Mesenchymal stromal cells

miR-155:

microRNA-155

NAFLD:

Non-alcoholic fatty liver disease

PDX-1:

Pancreatic duodenal homeobox -1

PPARγ:

Peroxisome proliferator-activated receptor gamma

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

SGLT2:

Sodium-glucose cotransporter-2

SOD:

Superoxide dismutase

STZ:

Streptozotocin

SUR:

Sulfonylurea receptor

SUs:

Sulfonylureas

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TGF:

Transforming growth

TZD:

Thiazolidinediones

UC-MSCs:

Umbilical Cord derived mesenchymal stromal cells

VEGF:

Vascular endothelial growth factor

WJ-MSCs:

Wharton’s jelly mesenchymal stromal cells

References

  1. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60.

    PubMed  CAS  Google Scholar 

  2. Goyal R, Singhal M, Jialal I (2023) Type 2 diabetes. StatPearls. Treasure Island: StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK513253/. Accessed 22 Sept, 2023

  3. Ruiz-Roso MB, Knott-Torcal C, Matilla-Escalante DC, Garcimartín A, Sampedro-Nuñez MA, Dávalos A, et al. COVID-19 lockdown and changes of the dietary pattern and physical activity habits in a cohort of patients with Type 2 diabetes mellitus. Nutrients. 2020;12:2327.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.706978.

    Article  Google Scholar 

  5. Gholamaliei B, Karimi-Shahanjarini A, Roshanaei G, Rezapour-Shahkolaei F. Medication adherence and its related factors in patients with type II diabetes. J Educ Community Health. 2016;2:3–12.

    Google Scholar 

  6. Unwin D, Delon C, Unwin J, Tobin S, Taylor R. What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutr Prev Health. 2023;6:46–55.

    PubMed  PubMed Central  Google Scholar 

  7. Ricci M, Mancebo-Sevilla JJ, Cobos Palacios L, Sanz-Cánovas J, López-Sampalo A, Hernández-Negrin H, et al. Remission of type 2 diabetes: a critical appraisal. Front Endocrinol. 2023. https://doi.org/10.3389/fendo.2023.1125961.

    Article  Google Scholar 

  8. Chen S, Gan D, Lin S, Zhong Y, Chen M, Zou X, et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics. 2022;12:2722–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Huang Q, Huang Y, Liu J. Mesenchymal stem cells: an excellent candidate for the treatment of diabetes mellitus. Int J Endocrinol. 2021;2021: e9938658.

    Google Scholar 

  10. Feier AM, Portan D, Manu DR, Kostopoulos V, Kotrotsos A, Strnad G, et al. Primary MSCs for personalized medicine: ethical challenges, isolation and biocompatibility evaluation of 3D electrospun and printed scaffolds. Biomedicines. 2022;10:1563.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:272.

    PubMed  PubMed Central  Google Scholar 

  12. Saha A, Samadder A, Nandi S. Stem cell therapy in combination with naturopathy: current progressive management of diabetes and associated complications. Curr Top Med Chem. 2023;23:649–89.

    PubMed  CAS  Google Scholar 

  13. Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta BBA-Mol Basis Dis. 2017;1863:1984–90.

    CAS  Google Scholar 

  14. Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol—Endocrinol Metab. 2019;316:E268-85.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Vial G, Detaille D, Guigas B. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00294.

    Article  Google Scholar 

  16. Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med. 2020;24:2832–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Oh YS, Bae GD, Baek DJ, Park E-Y, Jun H-S. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol. 2018;0:384.

  18. Kim HI, Lee JS, Kwak BK, Hwang WM, Kim MJ, Kim Y-B, et al. Metformin ameliorates lipotoxic β-cell dysfunction through a concentration-dependent dual mechanism of action. Diabetes Metab J. 2019;43:854–66.

    PubMed  PubMed Central  Google Scholar 

  19. Moon JS, Karunakaran U, Elumalai S, Lee I-K, Lee HW, Kim Y-W, et al. Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic beta cells. J Diabetes Complicat. 2017;31:21–30.

    Google Scholar 

  20. Bagheri M, Mostafavinia A, Abdollahifar M-A, Amini A, Ghoreishi SK, Chien S, et al. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomed Pharmacother. 2020;123: 109776.

    PubMed  CAS  Google Scholar 

  21. Ochoa-Gonzalez F, Cervantes-Villagrana AR, Fernandez-Ruiz JC, Nava-Ramirez HS, Hernandez-Correa AC, Enciso-Moreno JA, et al. Metformin induces cell cycle arrest, reduced proliferation, wound healing impairment in vivo and is associated to clinical outcomes in diabetic foot ulcer patients. PLOS ONE. 2016;11: e0150900.

    PubMed  PubMed Central  Google Scholar 

  22. Han X, Tao Y, Deng Y, Yu J, Sun Y, Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep. 2017;16:8691–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Lazarus G, Suhardi IP, Wiyarta E, Rasyidah RA, Barliana JD. Is there a need to reconsider the use of metformin in COVID-19 patients with type 2 diabetes mellitus? Int J Diabetes Dev Ctries. 2021;41:377–82.

    PubMed  CAS  Google Scholar 

  24. Scheen AJ. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab. 2020;46:423–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Hieronymus L, Griffin S. Role of amylin in type 1 and type 2 diabetes. Diabetes Educ. 2015;41:47S-56S.

    PubMed  Google Scholar 

  26. Drug Approval Package: Symlin (Pramlintide Acetate) NDA #021332. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21-332_Symlin.cfm. Accessed 28 Aug 2021

  27. Herrmann K, Zhou M, Wang A, de Bruin TWA. Cardiovascular safety assessment of pramlintide in type 2 diabetes: results from a pooled analysis of five clinical trials. Clin Diabetes Endocrinol. 2016;2:12.

  28. Boyle CN, Lutz TA, Le Foll C. Amylin—its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab. 2018;8:203–10.

    PubMed  CAS  Google Scholar 

  29. Nascimento CVMF, Sinezia C, Sisnande T, Lima LMTR, Lacativa PGS. BZ043, a novel long-acting amylin analog, reduces gastric emptying, food intake, glycemia and insulin requirement in streptozotocin-induced diabetic rats. Peptides. 2019;114:44–9.

    PubMed  CAS  Google Scholar 

  30. Gao X, Cai X, Yang W, Chen Y, Han X, Ji L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J Diabetes Investig. 2018;9:321–31.

    PubMed  CAS  Google Scholar 

  31. Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4:e00528–18.

  32. Zhu Q, Tong Y, Wu T, Li J, Tong N. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an eastern or western diet: a systematic meta-analysis. Clin Ther. 2013;35:880–99.

    PubMed  Google Scholar 

  33. Wang J-S, Huang C-N, Hung Y-J, Kwok C-F, Sun J-H, Pei D, et al. Acarbose plus metformin fixed-dose combination outperforms acarbose monotherapy for type 2 diabetes. Diabetes Res Clin Pract. 2013;102:16–24.

    PubMed  CAS  Google Scholar 

  34. Holmbäck U, Forslund A, Grudén S, Alderborn G, Söderhäll A, Hellström PM, et al. Effects of a novel combination of orlistat and acarbose on tolerability, appetite, and glucose metabolism in persons with obesity. Obes Sci Pract. 2020;6:313–23.

    PubMed  PubMed Central  Google Scholar 

  35. Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type-2 diabetes in db/db mice by inhibiting PDX-1 methylation. Mol Med Rep. 2021;23:72.

    PubMed  CAS  Google Scholar 

  36. Han X, Deng Y, Yu J, Sun Y, Ren G, Cai J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db mice. Oxid Med Cell Longev. 2017;2017:7809581.

    PubMed  PubMed Central  Google Scholar 

  37. Sugimoto S, Nakajima H, Kosaka K, Hosoi H. Review: Miglitol has potential as a therapeutic drug against obesity. Nutr Metab. 2015;12:51.

    Google Scholar 

  38. Collins L, Costello RA. Glucagon-like Peptide-1 Receptor Agonists. StatPearls. Treasure Island: StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/books/NBK551568/. Accessed 27 Mar 2022

  39. Drug Approval Package: Byetta (Exenatide) NDA #021773. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021773_byettatoc.cfm. Accessed 9 Sept 2021

  40. Drug Approval Package: Victoza (Liraglutide [rDNA]) Injection. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022341s000TOC.cfm. Accessed 27 Mar 2022

  41. Ozempic (semaglutide) Injection [Internet]. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209637Orig1s000TOC.cfm. Accessed 27Mar 2022

  42. Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud RDS. 2014;11:202–30.

    PubMed  Google Scholar 

  43. Carris NW, Taylor JR, Gums JG. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations. Drugs. 2014;74:2141–52.

    PubMed  CAS  Google Scholar 

  44. Joubert M, Opigez V, Pavlikova B, Paul LPS, Jeandidier N, Briant AR, et al. Efficacy and safety of exenatide as add-on therapy for patients with type 2 diabetes with an intensive insulin regimen: a randomized double-blind trial. Diabetes Obes Metab. 2021;23:374–81.

    PubMed  CAS  Google Scholar 

  45. Abdul-Ghani MA, Puckett C, Triplitt C, Maggs D, Adams J, Cersosimo E, et al. Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the efficacy and durability of initial combination therapy for type 2 diabetes (EDICT): a randomized trial. Diabetes Obes Metab. 2015;17:268–75.

  46. Abdul-Ghani M, Migahid O, Megahed A, DeFronzo RA, Al-Ozairi E, Jayyousi A. Combination therapy with pioglitazone/exenatide improves beta-cell function and produces superior glycaemic control compared with basal/bolus insulin in poorly controlled type 2 diabetes: a 3-year follow-up of the Qatar study. Diabetes Obes Metab. 2020;22:2287–94.

    PubMed  CAS  Google Scholar 

  47. Kapodistria K, Tsilibary E, Kotsopoulou E, Moustardas P, Kitsiou P. Liraglutide, a human glucagon-like peptide-1 analogue, stimulates AKT-dependent survival signalling and inhibits pancreatic β-cell apoptosis. J Cell Mol Med. 2018;22:2970–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Marzook A, Tomas A, Jones B. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.678055.

    Article  Google Scholar 

  49. Ackeifi C, Wang P, Karakose E, Fox JEM, González BJ, Liu H, et al. GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human β cell regeneration. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaw9996.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kawanami D, Takashi Y. GLP-1 receptor agonists in diabetic kidney disease: from clinical outcomes to mechanisms. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00967.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–8.

    PubMed  CAS  Google Scholar 

  52. Razzaki TS, Weiner A, Shukla AP. Tirzepatide: does the evidence to date show potential for the treatment of early stage type 2 diabetes? Ther Clin Risk Manag. 2022;18:955–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21:169.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Mathiesen DS, Bagger JI, Bergmann NC, Lund A, Christensen MB, Vilsbøll T, et al. The effects of dual GLP-1/GIP receptor agonism on glucagon secretion—a review. Int J Mol Sci. 2019;20:4092.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Sinha R, Papamargaritis D, Sargeant JA, Davies MJ. Efficacy and safety of tirzepatide in type 2 diabetes and obesity management. J Obes Metab Syndr. 2023;32:25–45.

    PubMed  PubMed Central  Google Scholar 

  56. Urva S, Coskun T, Loh MT, Du Y, Thomas MK, Gurbuz S, et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. The Lancet. 2022;400:1869–81.

    CAS  Google Scholar 

  57. Coskun T, Urva S, Roell WC, Qu H, Loghin C, Moyers JS, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. Cell Metab. 2022;34:1234-1247.e9.

    PubMed  CAS  Google Scholar 

  58. Wang J-Y, Wang Q-W, Yang X-Y, Yang W, Li D-R, Jin J-Y, et al. GLP−1 receptor agonists for the treatment of obesity: role as a promising approach. Front Endocrinol. 2023;14:1085799.

    Google Scholar 

  59. Harada N, Inagaki N. Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. J Diabetes Investig. 2012;3:352–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Pirahanchi Y, Jessu R, Aeddula NR. Physiology, sodium potassium pump. StatPearls. Treasure Island: StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK537088/. Accessed 31 July 2023

  61. Liu L, Shi F-H, Xu H, Wu Y, Gu Z-C, Lin H-W. Efficacy and safety of ertugliflozin in type 2 diabetes: a systematic review and meta-analysis. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2021.752440.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marrs JC, Anderson SL. Ertugliflozin in the treatment of type 2 diabetes mellitus. Drugs Context. 2020;9:7–4.

    Google Scholar 

  63. Padda IS, Mahtani AU, Parmar M. Sodium-glucose transport protein 2 (SGLT2) inhibitors. StatPearls. Treasure Island: StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK576405/. Accessed 30 July 2023

  64. Pasqualotto E, Figueiredo Watanabe JM, Gewehr DM, da Silva Maintinguer R, van de Sande-Lee S, de Araujo GN, et al. Efficacy and safety of bexagliflozin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes Metab. 2023;25:1794–802.

    PubMed  CAS  Google Scholar 

  65. Hsia DS, Grove O, Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24:73–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79:219–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Pinto LC, Rados DV, Remonti LR, Kramer CK, Leitao CB, Gross JL. Efficacy of SGLT2 inhibitors in glycemic control, weight loss and blood pressure reduction: a systematic review and meta-analysis. Diabetol Metab Syndr. 2015;7:A58.

    PubMed Central  Google Scholar 

  68. Al Jobori H, Daniele G, Adams J, Cersosimo E, Solis-Herrera C, Triplitt C, et al. Empagliflozin treatment is associated with improved β-cell function in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2018;103:1402–7.

    PubMed  PubMed Central  Google Scholar 

  69. Fushimi Y, Obata A, Sanada J, Nogami Y, Ikeda T, Yamasaki Y, et al. Early combination therapy of empagliflozin and linagliptin exerts beneficial effects on pancreatic β cells in diabetic db/db mice. Sci Rep. 2021;11:16120.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Karlsson D, Ahnmark A, Sabirsh A, Andréasson A-C, Gennemark P, Sandinge A-S, et al. Inhibition of SGLT2 preserves function and promotes proliferation of human islets cells in vivo in diabetic mice. Biomedicines. 2022;10:203.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Wei R, Cui X, Feng J, Gu L, Lang S, Wei T, et al. Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice. Metabolism. 2020;111: 154324.

    PubMed  CAS  Google Scholar 

  72. Sands AT, Zambrowicz BP, Rosenstock J, Lapuerta P, Bode BW, Garg SK, et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care. 2015;38:1181–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Danne T, Pettus J, Giaccari A, Cariou B, Rodbard H, Weinzimer SA, et al. Sotagliflozin added to optimized insulin therapy leads to lower rates of clinically relevant hypoglycemic events at any HbA1c at 52 weeks in adults with type 1 diabetes. Diabetes Technol Ther. 2019;21:471–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Avgerinos I, Karagiannis T, Kakotrichi P, Michailidis T, Liakos A, Matthews DR, et al. Sotagliflozin for patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2022;24:106–14.

    PubMed  CAS  Google Scholar 

  75. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384:129–39.

    PubMed  CAS  Google Scholar 

  76. Salah HM, Al’Aref SJ, Khan MS, Al-Hawwas M, Vallurupalli S, Mehta JL, et al. Effects of sodium-glucose cotransporter 1 and 2 inhibitors on cardiovascular and kidney outcomes in type 2 diabetes: a meta-analysis update. Am Heart J. 2021;233:86–91.

  77. Singh AK. Efficacy and safety of teneligliptin. Indian J Endocrinol Metab. 2017;21:11–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol. 2019;10:80.

    Google Scholar 

  79. Engel SS, Round E, Golm GT, Kaufman KD, Goldstein BJ. Safety and tolerability of sitagliptin in type 2 diabetes: pooled analysis of 25 clinical studies. Diabetes Ther. 2013;4:119–45.

    PubMed  PubMed Central  Google Scholar 

  80. Zeng D-K, Xiao Q, Li F-Q, Tang Y-Z, Jia C-L, Tang X-W. Cardiovascular risk of sitagliptin in treating patients with type 2 diabetes mellitus. Biosci Rep. 2019;39:BSR20190980.

  81. Ceriello A, Inagaki N. Pharmacokinetic and pharmacodynamic evaluation of linagliptin for the treatment of type 2 diabetes mellitus, with consideration of Asian patient populations. J Diabetes Investig. 2017;8:19–28.

    PubMed  CAS  Google Scholar 

  82. Abubaker M, Mishra P, Swami OC. Teneligliptin in management of diabetic kidney disease: a review of place in therapy. J Clin Diagn Res JCDR. 2017;11:OE05–9.

  83. Shah K. Teneligliptin in early diabetic kidney disease: an observation in asian indian patients with type 2 diabetes mellitus in real-life scenario. J Clin Diagn Res JCDR. 2017;11:OC22.

  84. Ahrén B. DPP-4 inhibition and the path to clinical proof. Front Endocrinol. 2019;10:376.

    Google Scholar 

  85. Dejager S, Schweizer A, Foley JE. Evidence to support the use of vildagliptin monotherapy in the treatment of type 2 diabetes mellitus. Vasc Health Risk Manag. 2012;8:339–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. El Ebrashy I, El Kafrawy N, Raouf R, Yousry D. Effectiveness, safety, and tolerability of vildagliptin or vildagliptin/metformin combination in patients with type 2 diabetes uncontrolled on insulin therapy in a real-world setting in Egypt: the OMEGA study. Diabetes Res Clin Pract. 2020;162: 108042.

    PubMed  Google Scholar 

  87. Ahrén B. Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin. Vasc Health Risk Manag. 2008;4:383–94.

    PubMed  PubMed Central  Google Scholar 

  88. Mokta JK, Ramesh null, Sahai AK, Kaundal PK, Mokta K. Comparison of safety and efficacy of glimepiride-metformin and vildagliptin- metformin treatment in newly diagnosed type 2 diabetic patients. J Assoc Physicians India. 2018;66:30–5.

  89. Al-Kuraishy HM, Sami OM, Hussain NR, Al-Gareeb AI. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J Adv Pharm Technol Res. 2020;11:142–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang B, Sun Y, Sang Y, Liu X, Liang J. Comparison of dipeptidyl peptidase-4 inhibitors and pioglitazone combination therapy versus pioglitazone monotherapy in type 2 diabetes. Medicine (Baltimore). 2018;97: e12633.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPARγ is a major driver of the accumulation and phenotype of adipose-tissue Treg cells. Nature. 2012;486:549–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Giglio RV, Papanas N, Rizvi AA, Ciaccio M, Patti AM, Ilias I, et al. An update on the current and emerging use of thiazolidinediones for type 2 diabetes. Medicina (Mex). 2022;58:1475.

    Google Scholar 

  93. Bae J, Park T, Kim H, Lee M, Cha B-S. Lobeglitazone: a novel thiazolidinedione for the management of type 2 diabetes mellitus. Diabetes Metab J. 2021;45:326–36.

    PubMed  PubMed Central  Google Scholar 

  94. Fain JN, Buehrer B, Tichansky DS, Madan AK. Regulation of adiponectin release and demonstration of adiponectin mRNA as well as release by the non-fat cells of human omental adipose tissue. Int J Obes. 2005;2008(32):429–35.

    Google Scholar 

  95. Nie J-M, Li H-F. Metformin in combination with rosiglitazone contribute to the increased serum adiponectin levels in people with type 2 diabetes mellitus. Exp Ther Med. 2017;14:2521–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Brooks-Worrell BM, Palmer JP. Attenuation of islet-specific T cell responses is associated with C-peptide improvement in autoimmune type 2 diabetes patients. Clin Exp Immunol. 2013;171:164–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Ko KD, Kim KK, Lee KR. Does weight gain associated with thiazolidinedione use negatively affect cardiometabolic health? J Obes Metab Syndr. 2017;26:102–6.

    PubMed  PubMed Central  Google Scholar 

  98. Kim K-S, Hong S, Ahn H-Y, Park C-Y. comparative efficacy of lobeglitazone versus pioglitazone on albuminuria in patients with type 2 diabetes mellitus. Diabetes Ther. 2021;12:171–81.

    PubMed  CAS  Google Scholar 

  99. Kimura T, Kaneto H, Shimoda M, Hirukawa H, Okauchi S, Kohara K, et al. Protective effects of pioglitazone and/or liraglutide on pancreatic β-cells in db/db mice: comparison of their effects between in an early and advanced stage of diabetes. Mol Cell Endocrinol. 2015;400:78–89.

    PubMed  CAS  Google Scholar 

  100. Kwon MJ, Lee YJ, Jung HS, Shin HM, Kim TN, Lee SH, et al. The direct effect of lobeglitazone, a new thiazolidinedione, on pancreatic beta cells: a comparison with other thiazolidinediones. Diabetes Res Clin Pract. 2019;151:209–23.

    PubMed  CAS  Google Scholar 

  101. Lytrivi M, Castell A-L, Poitout V, Cnop M. Recent insights into mechanisms of β-Cell lipo- and glucolipotoxicity in type 2 diabetes. J Mol Biol. 2020;432:1514–34.

    PubMed  CAS  Google Scholar 

  102. Saitoh Y, Chun-ping C, Noma K, Ueno H, Mizuta M, Nakazato M. Pioglitazone attenuates fatty acid–induced oxidative stress and apoptosis in pancreatic β-cells. Diabetes Obes Metab. 2008;10:564–73.

    PubMed  CAS  Google Scholar 

  103. Alba M, Ahrén B, Inzucchi SE, Guan Y, Mallick M, Xu L, et al. Sitagliptin and pioglitazone provide complementary effects on postprandial glucose and pancreatic islet cell function. Diabetes Obes Metab. 2013;15:1101–10.

    PubMed  CAS  Google Scholar 

  104. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51:S368-76.

    PubMed  CAS  Google Scholar 

  105. Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci AMS. 2015;11:840–8.

    PubMed  CAS  Google Scholar 

  106. Basit A, Riaz M, Fawwad A. Glimepiride: evidence-based facts, trends, and observations. Vasc Health Risk Manag. 2012;8:463–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Kudaravalli J, Vijayalakshmi G, Kiran Kishore K. Safety and efficacy of sulfonylurea drugs in type 2 diabetes mellitus. Apollo Med. 2013;10:165–8.

    Google Scholar 

  108. Hirst JA, Farmer AJ, Dyar A, Lung TWC, Stevens RJ. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013;56:973–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Sahay RK, Mittal V, Gopal GR, Kota S, Goyal G, Abhyankar M, et al. Glimepiride and metformin combinations in diabetes comorbidities and complications: real-world evidence. Cureus. 2021;12: e10700.

    Google Scholar 

  110. Cook MN, Girman CJ, Stein PP, Alexander CM, Holman RR. Glycemic control continues to deteriorate after sulfonylureas are added to metformin among patients with type 2 diabetes. Diabetes Care. 2005;28:995–1000.

    PubMed  CAS  Google Scholar 

  111. Eriksson JW, Bodegard J, Nathanson D, Thuresson M, Nyström T, Norhammar A. Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Res Clin Pract. 2016;117:39–47.

    PubMed  CAS  Google Scholar 

  112. Taisiia Pavlovna T, Kseniia Petrovna S, Anna Anatolievna V, Ivan Sergeyevich U, Olga Vladimirovna R, Roman Viktorovich G, et al. Dynamics of total volume of pancreatic α- and β -cells under the influence sulfonylureas and their combination with dipeptidyl peptidase-4 inhibitors. Endocrinol Diabetes Metab. 2021;4: e00238.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Kalra S, Ghosh S, Das AK, Nair T, Bajaj S, Priya G, et al. Unravelling the utility of modern sulfonylureas from cardiovascular outcome trials and landmark trials: expert opinion from an international panel. Indian Heart J. 2020;72:7–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Borowiec AM, Właszczuk A, Olakowska E, Lewin-Kowalik J. TXNIP inhibition in the treatment of diabetes. Verapamil as a novel therapeutic modality in diabetic patients. Med Pharm Rep. 2022;95:243.

  115. Yoshihara E. TXNIP/TBP-2: a master regulator for glucose homeostasis. Antioxid Basel Switz. 2020;9:765.

    CAS  Google Scholar 

  116. Ovalle F, Grimes T, Xu G, Patel AJ, Grayson TB, Thielen LA, et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat Med. 2018;24:1108.

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Pijl H, Ohashi S, Matsuda M, Miyazaki Y, Mahankali A, Kumar V, et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23:1154–61.

    PubMed  CAS  Google Scholar 

  118. Bharati SM, Singh N. Effect of losartan and atenolol on insulin sensitivity in nondiabetic hypertensive patients. J Pharmacol Pharmacother. 2016;7:80–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Annamaraju P, Baradhi KM. Pentoxifylline. StatPearls. Treasure Island: StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK559096/. Accessed 31 July 2023

  120. Papadopoulou A, Papadopoulos KI. Successful lifestyle modifications may underlie umbilical cord-mesenchymal stromal cell effects in type 2 diabetes mellitus. World J Diabetes. 2023;14:347–51.

    PubMed  PubMed Central  Google Scholar 

  121. Schmidt SK, Hemmestad L, MacDonald CS, Langberg H, Valentiner LS. Motivation and barriers to maintaining lifestyle changes in patients with type 2 diabetes after an intensive lifestyle intervention (the U-TURN trial): a longitudinal qualitative study. Int J Environ Res Public Health. 2020;17:7454.

    PubMed  PubMed Central  Google Scholar 

  122. Nikpour S, Mehrdad N, Sanjari M, Aalaa M, Heshmat R, Khabaz Mafinejad M, et al. Challenges of type 2 diabetes mellitus management from the perspective of patients: conventional content analysis. Interact J Med Res. 2022;11: e41933.

    PubMed  PubMed Central  Google Scholar 

  123. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: international Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24.

    PubMed  CAS  Google Scholar 

  124. Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemotherapy. 2010;37:75–83.

    Google Scholar 

  125. Jayasinghe M, Prathiraja O, Perera PB, Jena R, Silva MS, Weerawarna PSH, et al. The role of mesenchymal stem cells in the treatment of type 1 diabetes. Cureus. 2022;14:e27337.

    PubMed  PubMed Central  Google Scholar 

  126. Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64:587–92.

    PubMed  CAS  Google Scholar 

  127. Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Transl. 2015;3:26–33.

    Google Scholar 

  128. Wu X-H, Liu C-P, Xu K-F, Mao X-D, Zhu J, Jiang J-J, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol WJG. 2007;13:3342–9.

    PubMed  CAS  Google Scholar 

  129. Bhansali A. Efficacy and Safety of Autologous Bone Marrow Derived Stem Cell Transplantation in Patients With Type 2 Diabetes Mellitus. clinicaltrials.gov; 2015 Oct. Report No.: NCT01759823.: https://clinicaltrials.gov/study/NCT01759823

  130. Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, et al. Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant. 2014;23:1075–85.

    PubMed  Google Scholar 

  131. Nguyen LT, Hoang DM, Nguyen KT, Bui DM, Nguyen HT, Le HTA, et al. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. STEM CELLS Transl Med. 2021;10:1266–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Le PT-B, Phu-Van Doan N, Van Tien P, Hoang DNC, Phan NK, Van Pham P. A type 2 diabetes mellitus patient was successfully treated by autologous bone marrow-derived stem cell transplantation: a case report. Biomed Res Ther. 2019;6:2966–9.

  133. Li G, Peng H, Qian S, Zou X, Du Y, Wang Z, et al. Bone marrow-derived mesenchymal stem cells restored high-fat-fed induced hyperinsulinemia in rats at early stage of type 2 diabetes mellitus. Cell Transplant. 2020;29:0963689720904628.

    PubMed  PubMed Central  Google Scholar 

  134. Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, et al. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy. Cell Death Dis. 2015;6: e1885.

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Sood V, Bhansali A, Mittal BR, Singh B, Marwaha N, Jain A, et al. Autologous bone marrow derived stem cell therapy in patients with type 2 diabetes mellitus—defining adequate administration methods. World J Diabetes. 2017;8:381.

    PubMed  PubMed Central  Google Scholar 

  136. Sun X, Luo L-H, Feng L, Li D-S, Zhong K-Z. B cell lymphoma-2-modified bone marrow-derived mesenchymal stem cells transplantation for the treatment of diabetes mellitus-induced erectile dysfunction in a rat model. Urol Int. 2016;98:358–66.

    PubMed  Google Scholar 

  137. Fu Q, Liu Y, Zhang Q, Chen L, Cai Z, Shi R, et al. VEGF gene modified allogenic bone marrow-derived mesenchymal stem cells therapy in diabetic hindlimb ischemia rats. Int J Clin Exp Pathol. 2016;9:888–98.

    CAS  Google Scholar 

  138. Zhu Q, Hao H, Xu H, Fichman Y, Cui Y, Yang C, et al. Combination of antioxidant enzyme overexpression and N-acetylcysteine treatment enhances the survival of bone marrow mesenchymal stromal cells in ischemic limb in mice with type 2 diabetes. J Am Heart Assoc. 2021;10: e023491.

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: Implications in tissue regeneration. World J Stem Cells. 2014;6:312–21.

    PubMed  PubMed Central  Google Scholar 

  140. Karaoz E, Okcu A, Ünal ZS, Subasi C, Saglam O, Duruksu G. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy. 2013;15:557–70.

    PubMed  CAS  Google Scholar 

  141. Aasar HE, Rashed L, Sadik AE, Amer R, Emam H. The role of the adipose tissue-derived mesenchymal stem cells enriched with melatonin in pancreatic cellular regeneration. Folia Morphol. 2022;81:931–41.

    Google Scholar 

  142. Hong Y, Park E-Y, Kim D, Lee H, Jung HS, Jun H-S. Glucosamine potentiates the differentiation of adipose-derived stem cells into glucose-responsive insulin-producing cells. Ann Transl Med. 2020;8:561.

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Sen S, Domingues CC, Rouphael C, Chou C, Kim C, Yadava N. Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Res Ther. 2015;6:242.

    PubMed  PubMed Central  Google Scholar 

  144. Sun L-L, Liu T-J, Li L, Tang W, Zou J-J, Chen X-F, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces β-cell proliferation in diabetic mice. Int J Mol Med. 2017;39:936–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Gabr MM, Zakaria MM, Refaie AF, Abdel-Rahman EA, Reda AM, Ali SS, et al. From human mesenchymal stem cells to insulin-producing cells: comparison between bone marrow- and adipose tissue-derived cells. BioMed Res Int. 2017;2017: e3854232.

    Google Scholar 

  146. Xie M, Hao HJ, Cheng YU, Xie ZY, Yin YQ, Zhang Q, et al. Adipose-derived mesenchymal stem cells ameliorate hyperglycemia through regulating hepatic glucose metabolism in type 2 diabetic rats. Biochem Biophys Res Commun. 2017;483:435–41.

    PubMed  CAS  Google Scholar 

  147. Hu J, Fu Z, Chen Y, Tang N, Wang L, Wang F, et al. Effects of autologous adipose-derived stem cell infusion on type 2 diabetic rats. Endocr J. 2015;62:339–52.

    PubMed  CAS  Google Scholar 

  148. Yu S, Cheng Y, Zhang L, Yin Y, Xue J, Li B, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther. 2019;10:1–18.

    Google Scholar 

  149. Takemura S, Shimizu T, Oka M, Sekiya S, Babazono T. Transplantation of adipose-derived mesenchymal stem cell sheets directly into the kidney suppresses the progression of renal injury in a diabetic nephropathy rat model. J Diabetes Investig. 2020;11:545–53.

    PubMed  CAS  Google Scholar 

  150. Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther. 2019;10:274.

    PubMed  PubMed Central  Google Scholar 

  151. Guillaume VGJ, Ruhl T, Boos AM, Beier JP. The crosstalk between adipose-derived stem or stromal cells (ASC) and cancer cells and ASC-mediated effects on cancer formation and progression—ASCs: safety hazard or harmless source of tropism? Stem Cells Transl Med. 2022;11:394–406.

    PubMed  PubMed Central  Google Scholar 

  152. Rossi F, Noren H, Jove R, Beljanski V, Grinnemo K-H. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther. 2020;11:489.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Chen X, Chen Y, Wang Z, Dong Z, Yao Y, Li Y, et al. Adipose-derived stem cells regulate CD4+ T-cell-mediated macrophage polarization and fibrosis in fat grafting in a mouse model. Heliyon. 2022;8: e11538.

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Ding D-C, Chang Y-H, Shyu W-C, Lin S-Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transpl. 2015;24:339–47.

    Google Scholar 

  155. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6:195–202.

    PubMed  PubMed Central  Google Scholar 

  156. Li B, Cheng Y, Yin Y, Xue J, Yu S, Gao J, et al. Reversion of early-and late-stage β-cell dedifferentiation by human umbilical cord-derived mesenchymal stem cells in type 2 diabetic mice. Cytotherapy. 2021;23:510–20.

    PubMed  CAS  Google Scholar 

  157. Nie P, Bai X, Lou Y, Zhu Y, Jiang S, Zhang L, et al. Human umbilical cord mesenchymal stem cells reduce oxidative damage and apoptosis in diabetic nephropathy by activating Nrf2. Stem Cell Res Ther. 2021;12:450.

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther. 2020;11:336.

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Guan L-X, Guan H, Li H-B, Ren C-A, Liu L, Chu J-J, et al. Therapeutic efficacy of umbilical cord-derived mesenchymal stem cells in patients with type 2 diabetes. Exp Ther Med. 2015;9:1623–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Tong Q, Duan L, Xu Z, Wang H, Wang X, Li Z, et al. Improved insulin secretion following intrapancreatic UCB transplantation in patients with T2DM. J Clin Endocrinol Metab. 2013;98:E1501-4.

    PubMed  CAS  Google Scholar 

  161. Zang L, Li Y, Hao H, Liu J, Cheng Y, Li B, et al. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther. 2022;13:180.

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Khin P-P, Lee J-H, Jun H-S. A brief review of the mechanisms of β-Cell dedifferentiation in type 2 diabetes. Nutrients. 2021;13:1593.

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Wang L, Liu T, Liang R, Wang G, Liu Y, Zou J, et al. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine. 2020. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(19)30830-8/fulltext. Accessed 30 Dec 2021

  164. Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton’s jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol. 2023;11:1211217.

    PubMed  PubMed Central  Google Scholar 

  165. Zolfaghar M, Mirzaeian L, Beiki B, Naji T, Moini A, Eftekhari-Yazdi P, et al. Wharton’s jelly derived mesenchymal stem cells differentiate into oocyte like cells in vitro by follicular fluid and cumulus cells conditioned medium. Heliyon. 2020;6: e04992.

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, et al. Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113:1886–95.

    PubMed  CAS  Google Scholar 

  167. Kassem DH, Kamal MM, El-Kholy AE-LG, El-Mesallamy HO. Exendin-4 enhances the differentiation of Wharton’s jelly mesenchymal stem cells into insulin-producing cells through activation of various β-cell markers. Stem Cell Res Ther. 2016;7:108.

  168. Ali A, Kuo W, Kuo C, Lo J, Chen MYC, Daddam JR, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton’s jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6: e10234.

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Ali A, Shibu MA, Kuo C-H, Lo J-F, Chen R-J, Day CH, et al. CHIP-overexpressing Wharton’s jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med. 2021;173:70–80.

    PubMed  CAS  Google Scholar 

  170. Gao LR, Zhang NK, Zhang Y, Chen Y, Wang L, Zhu Y, et al. Overexpression of apelin in Wharton’ jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats. Stem Cell Res Ther. 2018;9:339.

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Hu J, Wang Y, Gong H, Yu C, Guo C, Wang F, et al. Long term effect and safety of Wharton’s jelly-derived mesenchymal stem cells on type 2 diabetes. Exp Ther Med. 2016;12:1857–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther. 2014;5:57.

    PubMed  PubMed Central  Google Scholar 

  173. Al Demour S, Adwan S, Jafar H, Rahmeh R, Alhawari H, Awidi A. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jelly-derived mesenchymal stem cells in diabetic patients with erectile dysfunction: phase 1/2 clinical trial. Urol Int. 2021;105:935–43.

    PubMed  CAS  Google Scholar 

  174. Kassem DH, Kamal MM. Therapeutic efficacy of umbilical cord-derived stem cells for diabetes mellitus: a meta-analysis study. Stem Cell Res Ther. 2020;11:484.

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Tang Y, Zhou Y, Li H-J. Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther. 2021;12:71.

    PubMed  PubMed Central  Google Scholar 

  176. Yang M, Chen J, Chen L. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front Endocrinol. 2022;13:1027686.

    Google Scholar 

  177. González-González A, García-Sánchez D, Dotta M, Rodríguez-Rey JC, Pérez-Campo FM. Mesenchymal stem cells secretome: the cornerstone of cell-free regenerative medicine. World J Stem Cells. 2020;12:1529–52.

    PubMed  PubMed Central  Google Scholar 

  178. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, et al. Mesenchymal stem cell–derived exosomes: a promising biological tool in nanomedicine. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2020.590470.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Yin S, Ji C, Wu P, Jin C, Qian H. Human umbilical cord mesenchymal stem cells and exosomes: bioactive ways of tissue injury repair. Am J Transl Res. 2019;11:1230–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Chen M, Zhao Y, Zhou L, Li M, Zhang Q, Han Q, et al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes. Curr Med Sci. 2021;41:87–93.

    PubMed  CAS  Google Scholar 

  181. Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano. 2018;12:7613–28.

    PubMed  CAS  Google Scholar 

  182. Sharma R, Kumari M, Mishra S, Chaudhary DK, Kumar A, Avni B, et al. Exosomes secreted by umbilical cord blood-derived mesenchymal stem cell attenuate diabetes in mice. J Diabetes Res. 2021;2021: e9534574.

    Google Scholar 

  183. Su T, Xiao Y, Xiao YE, Guo QI, Li C, Huang Y, et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 2019;13:2450–62.

    PubMed  CAS  Google Scholar 

  184. Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 2018;67:235–47.

    PubMed  CAS  Google Scholar 

  185. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.

    PubMed  CAS  Google Scholar 

  186. Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications. Non-Coding RNA. 2021;7:39.

    PubMed  PubMed Central  CAS  Google Scholar 

  187. Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, et al. miRNAs as biomarkers in diabetes: moving towards precision medicine. Int J Mol Sci. 2022;23:12843.

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med. 2023;21:392.

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–12.

    PubMed  CAS  Google Scholar 

  190. Zhang B, Yang Y, Xiang L, Zhao Z, Ye R. Adipose-derived exosomes: a novel adipokine in obesity-associated diabetes. J Cell Physiol. 2019;234:16692–702.

    PubMed  CAS  Google Scholar 

  191. Shao M, Xu Q, Wu Z, Chen Y, Shu Y, Cao X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther. 2020;11:37.

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Műzes G, Sipos F. Mesenchymal stem cell-derived secretome: a potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells. 2022;11:2300.

    PubMed  PubMed Central  Google Scholar 

  193. Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, et al. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther. 2019;10:116.

    PubMed  PubMed Central  Google Scholar 

  194. Elshemy MM, Asem M, Allemailem KS, Uto K, Ebara M, Nabil A. Antioxidative capacity of liver- and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats. Oxid Med Cell Longev. 2021;2021:8833467.

    PubMed  PubMed Central  Google Scholar 

  195. Sanap A, Bhonde R, Joshi K. Mesenchymal stem cell conditioned medium ameliorates diabetic serum-induced insulin resistance in 3T3-L1 cells. Chronic Dis Transl Med. 2020;7:47–56.

    PubMed  PubMed Central  Google Scholar 

  196. Shree N, Bhonde RR. Conditioned media from adipose tissue derived mesenchymal stem cells reverse insulin resistance in cellular models. J Cell Biochem. 2017;118:2037–43.

    PubMed  CAS  Google Scholar 

  197. Kim K-S, Choi YK, Kim MJ, Hwang JW, Min K, Jung SY, et al. Umbilical cord-mesenchymal stem cell-conditioned medium improves insulin resistance in C2C12 cell. Diabetes Metab J. 2020;45:260–9.

    PubMed  PubMed Central  Google Scholar 

  198. Ormazabal V, Nova-Lampeti E, Rojas D, Zúñiga FA, Escudero C, Lagos P, et al. Secretome from human mesenchymal stem cells-derived endothelial cells promotes wound healing in a type-2 diabetes mouse model. Int J Mol Sci. 2022;23:941.

    PubMed  PubMed Central  CAS  Google Scholar 

  199. An Y-H, Kim DH, Lee EJ, Lee D, Park MJ, Ko J, et al. High-efficient production of adipose-derived stem cell (adsc) secretome through maturation process and its non-scarring wound healing applications. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.681501.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik S. Exosomes from acellular Wharton’s jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther. 2018;9:193.

    PubMed  PubMed Central  CAS  Google Scholar 

  201. García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology. 2021;73:513–22.

    PubMed  PubMed Central  Google Scholar 

  202. Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal stem cells (MSCs): a novel therapy for type 2 diabetes. Stem Cells Int. 2022;2022:8637493.

    PubMed  PubMed Central  Google Scholar 

  203. Zhuang W-Z, Lin Y-H, Su L-J, Wu M-S, Jeng H-Y, Chang H-C, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci. 2021;28:28.

    PubMed  PubMed Central  CAS  Google Scholar 

  204. Yin Y, Hao H, Cheng Y, Zang L, Liu J, Gao J, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis. 2018;9:760.

    PubMed  PubMed Central  Google Scholar 

  205. Wang W, Wu RD, Chen P, Xu XJ, Shi XZ, Huang LH, et al. Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes. Diabetes Metab Res Rev. 2020;36: e3212.

    PubMed  Google Scholar 

  206. Chen P, Huang Q, Xu XJ, Shao ZL, Huang LH, Yang XZ, et al. [The effect of liraglutide in combination with human umbilical cord mesenchymal stem cells treatment on glucose metabolism and β cell function in type 2 diabetes mellitus]. Zhonghua Nei Ke Za Zhi. 2016;55:349–54.

  207. Xu X, Wang W, Lin L, Chen P. Liraglutide in combination with human umbilical cord mesenchymal stem cell could improve liver lesions by modulating TLR4/NF-kB inflammatory pathway and oxidative stress in T2DM/NAFLD rats. Tissue Cell. 2020;66: 101382.

    PubMed  CAS  Google Scholar 

  208. Navabi R, Negahdari B, Hajizadeh-Saffar E, Hajinasrollah M, Jenab Y, Rabbani S, et al. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model. Life Sci. 2021;276: 119374.

    PubMed  CAS  Google Scholar 

  209. Zhou H, Yang J, Xin T, Li D, Guo J, Hu S, et al. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt–Sfrp2 pathways. Free Radic Biol Med. 2014;77:363–75.

    PubMed  CAS  Google Scholar 

  210. He J, Wang C, Sun Y, Lu B, Cui J, Dong N, et al. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress. Int J Mol Med. 2016;37:889–900.

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Song X, Sun X, Hao H, Han Q, Han W, Mu Y. Combined treatment with bone marrow-derived mesenchymal stem cells and exendin-4 promotes islet regeneration in streptozotocin-induced diabetic rats. Stem Cells Dev. 2021;30:502–14.

    PubMed  CAS  Google Scholar 

  212. Seo E, Lim JS, Jun J-B, Choi W, Hong I-S, Jun H-S. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Transl Med. 2017;15:35.

    PubMed  PubMed Central  Google Scholar 

  213. Chen C-H, Cheng B-C, Chen K-H, Shao P-L, Sung P-H, Chiang H-J, et al. Combination therapy of exendin-4 and allogenic adipose-derived mesenchymal stem cell preserved renal function in a chronic kidney disease and sepsis syndrome setting in rats. Oncotarget. 2017;8:100002–20.

    PubMed  PubMed Central  Google Scholar 

  214. Habib HA, Heeba GH, Khalifa MM. Effect of combined therapy of mesenchymal stem cells with GLP-1 receptor agonist, exenatide, on early-onset nephropathy induced in diabetic rats. Eur J Pharmacol. 2021;892: 173721.

    PubMed  CAS  Google Scholar 

  215. Skyler JS, Fonseca VA, Segal KR, Rosenstock J. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care. 2015;38:1742–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Wang X-M, Yang Y-J, Wu Y-J, Zhang Q, Qian H-Y. Attenuating hypoxia-induced apoptosis and autophagy of mesenchymal stem cells: the potential of sitagliptin in stem cell-based therapy. Cell Physiol Biochem. 2015;37:1914–26.

    PubMed  CAS  Google Scholar 

  217. Dai X, Zeng J, Yan X, Lin Q, Wang K, Chen J, et al. Sitagliptin-mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes. J Cell Mol Med. 2018;22:89–100.

    PubMed  CAS  Google Scholar 

  218. Tewary S, Lucas ES, Fujihara R, Kimani PK, Polanco A, Brighton PJ, et al. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. eBioMedicine. 2020. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(19)30812-6/fulltext. Accessed 1 Oct 2022

  219. Karimi S, Ai J, Khorsandi L, Bijan Nejad D, Saki G. Vildagliptin enhances differentiation of insulin producing cells from adipose-derived mesenchymal stem cells. Cell J Yakhteh. 2019;20:477–82.

    Google Scholar 

  220. Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, et al. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine. 2014;45:279–87.

    PubMed  CAS  Google Scholar 

  221. Ahmed Y, Ali ZY, Mohamed MA, Rashed LA, Mohamed EK. Impact of combined therapy of mesenchymal stem cells and sitagliptin on a metabolic syndrome rat model. J Diabetes Metab Disord. 2021;20:551–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Hamza AA, Fikry EM, Abdallah W, Amin A. Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats. Sci Rep. 2018;8:9827.

    PubMed  PubMed Central  Google Scholar 

  223. Wei J, Chen J, Wei X, Xiang X, Cheng Q, Xu J, et al. Long-term remission of type 2 diabetes after very-low-calorie restriction and related predictors. Front Endocrinol. 2022. https://doi.org/10.3389/fendo.2022.968239.

    Article  Google Scholar 

Download references

Acknowledgements

The illustration in this paper was created in BioRender.com.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

PA: conceptualization, data curation, formal analysis, investigation, software, validation, visualization, original draft, review, and editing; KT: original draft, review, and editing; MB: review, and editing; RJ: software, review, and editing; JA: formal analysis, original draft, supervision, review, and editing.

Corresponding author

Correspondence to Priyamvada Amol Arte.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arte, P.A., Tungare, K., Bhori, M. et al. Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach. Human Cell 37, 54–84 (2024). https://doi.org/10.1007/s13577-023-01007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01007-0

Keywords

Navigation