Skip to main content

Advertisement

Log in

The Echocardiographic Evaluation of the Right Heart: Current and Future Advances

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss physiologic and methodologic advances in the echocardiographic assessment of right heart (RH) function, including the emergence of artificial intelligence (AI) and point-of-care ultrasound.

Recent Findings

Recent studies have highlighted the prognostic value of right ventricular (RV) longitudinal strain, RV end-systolic dimensions, and right atrial (RA) size and function in pulmonary hypertension and heart failure. While RA pressure is a central marker of right heart diastolic function, the recent emphasis on venous excess imaging (VExUS) has provided granularity to the systemic consequences of RH failure. Several methodological advances are also changing the landscape of RH imaging including post-processing 3D software to delineate the non-longitudinal (radial, anteroposterior, and circumferential) components of RV function, as well as AI segmentation- and non-segmentation-based quantification. Together with recent guidelines and advances in AI technology, the field is shifting from specific RV functional metrics to integrated RH disease–specific phenotypes.

Summary

A modern echocardiographic evaluation of RH function should focus on the entire cardiopulmonary venous unit—from the venous to the pulmonary arterial system. Together, a multi-parametric approach, guided by physiology and AI algorithms, will help define novel integrated RH profiles for improved disease detection and monitoring.

Graphical Abstract: 

Advances in right heart echocardiography will incorporate a physiologic, multi-parametric approach that is augmented by deep learning to develop integrated right heart phenotypes. Ao Aorta, LV left ventricle, RA right atria, RV right ventricle, PA pulmonary artery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  2. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

    Article  PubMed  Google Scholar 

  3. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute Working Group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208.

    Article  PubMed  Google Scholar 

  4. Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care. 2011;15(2):R103. https://doi.org/10.1186/cc10119.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amsallem M, Kuznetsova T, Hanneman K, Denault A, Haddad F. Right heart imaging in patients with heart failure: a tale of two ventricles. Curr Opin Cardiol. 2016;31(5):469–82. https://doi.org/10.1097/HCO.0000000000000315.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ayach B, Fine NM, Rudski LG. Right ventricular strain: measurement and clinical application. Curr Opin Cardiol. 2018;33(5):486–92. https://doi.org/10.1097/HCO.0000000000000540.

    Article  PubMed  Google Scholar 

  7. Tadic M, Pieske-Kraigher E, Cuspidi C, et al. Right ventricular strain in heart failure: clinical perspective. Arch Cardiovasc Dis. 2017;110(10):562–71. https://doi.org/10.1016/j.acvd.2017.05.002.

    Article  PubMed  Google Scholar 

  8. •• Guazzi M, Naeije R. Right heart phenotype in heart failure with preserved ejection fraction. Circ Heart Fail. 2021;14(4):e007840. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007840. This study demonstrates the incorporation of physiologic principles and multiple parameters to define novel phenotypes of RV dysfunction in patients with HFpEF.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618–3731. https://doi.org/10.1093/eurheartj/ehac237. These new guideline recommendations describe the newest principles and definitions in diagnosing pulmonary hypertension using a multi-parametric and multi-modality approach which prioritizes early diagnosis.

  10. Hahn RT, Lerakis S, Delgado V, et al. Multimodality imaging of right heart function. J Am Coll Cardiol. 2023;81(19):1954–73. https://doi.org/10.1016/j.jacc.2023.03.392.

    Article  PubMed  Google Scholar 

  11. Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):87. https://doi.org/10.1186/s12968-020-00683-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Addetia K, Miyoshi T, Amuthan V, et al. Normal values of three-dimensional right ventricular size and function measurements: results of the world alliance societies of echocardiography study. J Am Soc Echocardiogr. Published online April 2023:S0894731723002031. https://doi.org/10.1016/j.echo.2023.04.011.

  13. Carvalho Singulane C, Singh A, Miyoshi T, et al. Sex-, age-, and race-related normal values of right ventricular diastolic function parameters: data from the World Alliance Societies of Echocardiography Study. J Am Soc Echocardiogr. 2022;35(4):426–34. https://doi.org/10.1016/j.echo.2021.10.006.

    Article  PubMed  Google Scholar 

  14. Addetia K, Miyoshi T, Citro R, et al. Two-dimensional echocardiographic right ventricular size and systolic function measurements stratified by sex, age, and ethnicity: results of the World Alliance of Societies of Echocardiography Study. J Am Soc Echocardiogr. 2021;34(11):1148-1157.e1. https://doi.org/10.1016/j.echo.2021.06.013.

    Article  PubMed  Google Scholar 

  15. Maus TM. TAPSE: a red herring after cardiac surgery. J Cardiothorac Vasc Anesth. 2018;32(2):779–81. https://doi.org/10.1053/j.jvca.2017.11.013.

    Article  PubMed  Google Scholar 

  16. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010.

    Article  PubMed  Google Scholar 

  17. Schneider M, Binder T. Echocardiographic evaluation of the right heart. Wien Klin Wochenschr. 2018;130(13–14):413–20. https://doi.org/10.1007/s00508-018-1330-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu VCC, Takeuchi M. Echocardiographic assessment of right ventricular systolic function. Cardiovasc Diagn Ther. 2018;8(1):70–79. https://doi.org/10.21037/cdt.2017.06.05.

  19. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  20. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(5):711–21. https://doi.org/10.1161/CIRCIMAGING.113.000640.

    Article  PubMed  Google Scholar 

  21. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J - Cardiovasc Imaging. 2018;19(6):591–600. https://doi.org/10.1093/ehjci/jey042.

    Article  PubMed  Google Scholar 

  22. Badano LP, Muraru D, Parati G, Haugaa K, Voigt JU. How to do right ventricular strain. Eur Heart J - Cardiovasc Imaging. 2020;21(8):825–7. https://doi.org/10.1093/ehjci/jeaa126.

    Article  PubMed  Google Scholar 

  23. Morris DA, Krisper M, Nakatani S, et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J - Cardiovasc Imaging. 2017;18(2):212–23. https://doi.org/10.1093/ehjci/jew011.

    Article  PubMed  Google Scholar 

  24. Lu KJ, Chen JXC, Profitis K, et al. Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography. 2015;32(6):966–74. https://doi.org/10.1111/echo.12783.

    Article  PubMed  Google Scholar 

  25. Hamada-Harimura Y, Seo Y, Ishizu T, et al. Incremental prognostic value of right ventricular strain in patients with acute decompensated heart failure. Circ Cardiovasc Imaging. 2018;11(10):e007249. https://doi.org/10.1161/CIRCIMAGING.117.007249.

    Article  PubMed  Google Scholar 

  26. Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1299–309. https://doi.org/10.1378/chest.10-2015.

    Article  PubMed  Google Scholar 

  27. Hsia BC, Lai A, Singh S, et al. Validation of American Society of Echocardiography Guideline-recommended parameters of right ventricular dysfunction using artificial intelligence compared with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. Published online June 2023:S0894731723003073. https://doi.org/10.1016/j.echo.2023.05.015.

  28. • Kitano T, Kovács A, Nabeshima Y, et al. Prognostic value of right ventricular strains using novel three-dimensional analytical software in patients with cardiac disease. Front Cardiovasc Med. 2022;9:837584. https://doi.org/10.3389/fcvm.2022.837584. Findings from this study highlight the prognostic value of 3-dimensional RVEF and non-longitudinal strain metrics in a wide array of cardiovascular diseases.

  29. Namisaki H, Nabeshima Y, Kitano T, Otani K, Takeuchi M. Prognostic value of the right ventricular ejection fraction, assessed by fully automated three-dimensional echocardiography: a direct comparison of analyses using right ventricular–focused views versus apical four-chamber views. J Am Soc Echocardiogr. 2021;34(2):117–26. https://doi.org/10.1016/j.echo.2020.09.016.

    Article  PubMed  Google Scholar 

  30. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46. https://doi.org/10.1016/j.echo.2011.11.010.

    Article  PubMed  Google Scholar 

  31. Magunia H, Dietrich C, Langer HF, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348–55. https://doi.org/10.1016/j.ijcard.2018.06.026.

    Article  PubMed  Google Scholar 

  32. Meng Y, Zhu S, Xie Y, et al. Prognostic value of right ventricular 3D speckle-tracking strain and ejection fraction in patients with HFpEF. Front Cardiovasc Med. 2021;8: 694365. https://doi.org/10.3389/fcvm.2021.694365.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Wang T, Haines P, et al. Prognostic value of right ventricular two-dimensional and three-dimensional speckle-tracking strain in pulmonary arterial hypertension: superiority of longitudinal strain over circumferential and radial strain. J Am Soc Echocardiogr. 2020;33(8):985-994.e1. https://doi.org/10.1016/j.echo.2020.03.015.

    Article  PubMed  Google Scholar 

  34. Ahmad A, Li H, Zhang Y, et al. Three-dimensional echocardiography assessment of right ventricular volumes and function: technological perspective and clinical application. Diagnostics. 2022;12(4):806. https://doi.org/10.3390/diagnostics12040806.

  35. Lang RM, Addetia K, Narang A, Mor-Avi V. 3-Dimensional echocardiography. JACC Cardiovasc Imaging. 2018;11(12):1854–78. https://doi.org/10.1016/j.jcmg.2018.06.024.

    Article  PubMed  Google Scholar 

  36. Tokodi M, Magyar B, Soós A, et al. Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms. JACC Cardiovasc Imaging. 2023;16(8):1005–18. https://doi.org/10.1016/j.jcmg.2023.02.017.

    Article  PubMed  Google Scholar 

  37. Haddad F, Gomes B. Automation for right heart analysis. JACC Cardiovasc Imaging. 2023;16(8):1019–21. https://doi.org/10.1016/j.jcmg.2023.03.018.

    Article  PubMed  Google Scholar 

  38. Lakatos BK, Nabeshima Y, Tokodi M, et al. Importance of nonlongitudinal motion components in right ventricular function: three-dimensional echocardiographic study in healthy volunteers. J Am Soc Echocardiogr. 2020;33(8):995-1005.e1. https://doi.org/10.1016/j.echo.2020.04.002.

    Article  PubMed  Google Scholar 

  39. Lakatos B, Tősér Z, Tokodi M, et al. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method. Cardiovasc Ultrasound. 2017;15(1):8. https://doi.org/10.1186/s12947-017-0100-0.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moceri P, Duchateau N, Baudouy D, et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur Heart J - Cardiovasc Imaging. 2018;19(4):450–8. https://doi.org/10.1093/ehjci/jex163.

    Article  PubMed  Google Scholar 

  41. Todaro MC, Carerj S, Zito C, Trifirò MP, Consolo G. Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension.

  42. Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53(1):1801900. https://doi.org/10.1183/13993003.01900-2018.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69(2):236–43. https://doi.org/10.1016/j.jacc.2016.10.047.

    Article  PubMed  Google Scholar 

  44. Tello K, Dalmer A, Axmann J, et al. Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail. 2019;12(1):e005512. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005512.

    Article  PubMed  Google Scholar 

  45. Nochioka K, Querejeta Roca G, Claggett B, et al. Right ventricular function, right ventricular–pulmonary artery coupling, and heart failure risk in 4 US communities: the Atherosclerosis Risk in Communities (ARIC) Study. JAMA Cardiol. 2018;3(10):939. https://doi.org/10.1001/jamacardio.2018.2454.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guazzi M, Dixon D, Labate V, et al. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2017;10(10):1211–21. https://doi.org/10.1016/j.jcmg.2016.12.024.

    Article  PubMed  Google Scholar 

  47. Bragança B, Trêpa M, Santos R, et al. Echocardiographic assessment of right ventriculo-arterial coupling: clinical correlates and prognostic impact in heart failure patients undergoing cardiac resynchronization therapy. J Cardiovasc Imaging. 2020;28(2):109. https://doi.org/10.4250/jcvi.2019.0094.

    Article  PubMed  PubMed Central  Google Scholar 

  48. López-Candales A, Vallurupalli S. Utility of the tricuspid annular tissue Doppler systolic velocity and pulmonary artery systolic pressure relationship in right ventricular systolic function assessment: a pilot study. Echocardiography. 2022;39(10):1276–83. https://doi.org/10.1111/echo.15441.

    Article  PubMed  Google Scholar 

  49. Vanderpool RR, Rischard F, Naeije R, Hunter K, Simon MA. Simple functional imaging of the right ventricle in pulmonary hypertension: can right ventricular ejection fraction be improved? Int J Cardiol. 2016;223:93–4. https://doi.org/10.1016/j.ijcard.2016.08.138.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tello K, Dalmer A, Vanderpool R, et al. Right ventricular function correlates of right atrial strain in pulmonary hypertension: a combined cardiac magnetic resonance and conductance catheter study. Am J Physiol-Heart Circ Physiol. 2020;318(1):H156–64. https://doi.org/10.1152/ajpheart.00485.2019.

    Article  CAS  PubMed  Google Scholar 

  51. Bhave NM, Visovatti SH, Kulick B, Kolias TJ, McLaughlin VV. Right atrial strain is predictive of clinical outcomes and invasive hemodynamic data in group 1 pulmonary arterial hypertension. Int J Cardiovasc Imaging. 2017;33(6):847–55. https://doi.org/10.1007/s10554-017-1081-7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sakata K, Uesugi Y, Isaka A, et al. Evaluation of right atrial function using right atrial speckle tracking analysis in patients with pulmonary artery hypertension. J Echocardiogr. 2016;14(1):30–8. https://doi.org/10.1007/s12574-015-0270-4.

    Article  PubMed  Google Scholar 

  53. Krittanawong C, Maitra NS, Hassan Virk HU, et al. Normal ranges of right atrial strain. JACC Cardiovasc Imaging. 2023;16(3):282–94. https://doi.org/10.1016/j.jcmg.2022.06.022.

    Article  PubMed  Google Scholar 

  54. Vakilian F, Tavallaie A, Alimi H, Poorzand H, Salehi M. Right atrial strain in the assessment of right heart mechanics in patients with heart failure with reduced ejection fraction. J Cardiovasc Imaging. 2021;29(2):135. https://doi.org/10.4250/jcvi.2020.0092.

    Article  PubMed  Google Scholar 

  55. Lang IM, Binder T. Right atrial strain is a surrogate of coupling in the right heart. Eur Heart J - Cardiovasc Imaging. 2020;21(8):863–4. https://doi.org/10.1093/ehjci/jeaa104.

    Article  PubMed  Google Scholar 

  56. Hasselberg NE, Kagiyama N, Soyama Y, et al. The prognostic value of right atrial strain imaging in patients with precapillary pulmonary hypertension. J Am Soc Echocardiogr. 2021;34(8):851-861.e1. https://doi.org/10.1016/j.echo.2021.03.007.

    Article  PubMed  Google Scholar 

  57. Anwer S, Guastafierro F, Erhart L, et al. Right atrial strain and cardiovascular outcome in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J - Cardiovasc Imaging. 2022;23(7):970–8. https://doi.org/10.1093/ehjci/jeac070.

    Article  PubMed  Google Scholar 

  58. Jung YH, Ren X, Suffredini G, Dodd-o JM, Gao WD. Right ventricular diastolic dysfunction and failure: a review. Heart Fail Rev. 2022;27(4):1077–90. https://doi.org/10.1007/s10741-021-10123-8.

    Article  PubMed  Google Scholar 

  59. Zakeri R, Mohammed SF. Epidemiology of right ventricular dysfunction in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2015;12(5):295–301. https://doi.org/10.1007/s11897-015-0267-3.

    Article  PubMed  Google Scholar 

  60. Abdeltawab A, Eweda I, Mostafa AE, Demian P, Awwad O. Relation of RV function to presence and degree of systemic hypertension. J Cardiovasc Dis Diagn. 2017;06(01). https://doi.org/10.4172/2329-9517.1000306.

  61. Rain S, Handoko ML, Trip P, et al. Right Ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128(18):2016–25. https://doi.org/10.1161/CIRCULATIONAHA.113.001873.

    Article  CAS  PubMed  Google Scholar 

  62. Pandey A, Kagiyama N, Yanamala N, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc Imaging. 2021;14(10):1887–900. https://doi.org/10.1016/j.jcmg.2021.04.010.

    Article  PubMed  Google Scholar 

  63. Rengo C, Brevetti G, Sorrentino G, et al. Portal vein pulsatility ratio provides a measure of right heart function in chronic heart failure. Ultrasound Med Biol. 1998;24(3):327–32. https://doi.org/10.1016/S0301-5629(97)00272-X.

    Article  CAS  PubMed  Google Scholar 

  64. Denault AY, Azzam MA, Beaubien-Souligny W. Imaging portal venous flow to aid assessment of right ventricular dysfunction. Can J Anesth Can Anesth. 2018;65(11):1260–1. https://doi.org/10.1007/s12630-018-1125-z.

    Article  Google Scholar 

  65. Trpkov C, Grant ADM, Fine NM. Intrarenal Doppler ultrasound renal venous stasis index correlates with acute cardiorenal syndrome in patients with acute decompensated heart failure. CJC Open. 2021;3(12):1444–52. https://doi.org/10.1016/j.cjco.2021.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Calderone A, Hammoud A, Jarry S, Denault A, Couture EJ. Femoral vein pulsatility: what does it mean? J Cardiothorac Vasc Anesth. 2021;35(8):2521–7. https://doi.org/10.1053/j.jvca.2021.03.027.

    Article  PubMed  Google Scholar 

  67. Beaubien-Souligny W, Eljaiek R, Fortier A, et al. The association between pulsatile portal flow and acute kidney injury after cardiac surgery: a retrospective cohort study. J Cardiothorac Vasc Anesth. 2018;32(4):1780–7. https://doi.org/10.1053/j.jvca.2017.11.030.

    Article  PubMed  Google Scholar 

  68. Eljaiek R, Cavayas YA, Rodrigue E, et al. High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients. Br J Anaesth. 2019;122(2):206–14. https://doi.org/10.1016/j.bja.2018.09.028.

    Article  CAS  PubMed  Google Scholar 

  69. Singh N, Kumar K, Nagaraja P, Manjunatha N. Portal venous pulsatility fraction, a novel transesophageal echocardiographic marker for right ventricular dysfunction in cardiac surgical patients. Ann Card Anaesth. 2020;23(1):39. https://doi.org/10.4103/aca.ACA_250_18.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arkles JS, Opotowsky AR, Ojeda J, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76. https://doi.org/10.1164/rccm.201004-0601OC.

    Article  PubMed  Google Scholar 

  71. Haddad F, Amsallem M. Full circle on pulmonary flow dynamics in pulmonary arterial hypertension. JACC Cardiovasc Imaging. 2017;10(10):1278–80. https://doi.org/10.1016/j.jcmg.2016.12.022.

    Article  PubMed  Google Scholar 

  72. Takahama H, McCully RB, Frantz RP, Kane GC. Unraveling the RV ejection Doppler envelope. JACC Cardiovasc Imaging. 2017;10(10):1268–77. https://doi.org/10.1016/j.jcmg.2016.12.021.

    Article  PubMed  Google Scholar 

  73. Yuan F, Liu C, Yu S, et al. The association between notching of the right ventricular outflow tract flow velocity Doppler envelope and impaired right ventricular function after acute high-altitude exposure. Front Physiol. 2021;12: 639761. https://doi.org/10.3389/fphys.2021.639761.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Svetlichnaya J, Selby V, Singer J, et al. Right ventricular outflow tract Doppler envelope mid-systolic notching predicts pulmonary vascular disease in patients with advanced lung disease. J Heart Lung Transplant. 2015;34(4):S342. https://doi.org/10.1016/j.healun.2015.01.974.

    Article  Google Scholar 

  75. Bossone E, D’Andrea A, D’Alto M, et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr. 2013;26(1):1–14. https://doi.org/10.1016/j.echo.2012.10.009.

    Article  PubMed  Google Scholar 

  76. Ohara H, Yoshihisa A, Horikoshi Y, et al. Renal venous stasis index reflects renal congestion and predicts adverse outcomes in patients with heart failure. Front Cardiovasc Med. 2022;9:772466. https://doi.org/10.3389/fcvm.2022.772466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Husain-Syed F, Birk H, Ronco C, et al. Doppler-derived renal venous stasis index in the prognosis of right heart failure. J Am Heart Assoc. 2019;8(21):e013584. https://doi.org/10.1161/JAHA.119.013584.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Benza RL, Gomberg-Maitland M, Elliott CG, et al. Predicting survival in patients with pulmonary arterial hypertension. Chest. 2019;156(2):323–37. https://doi.org/10.1016/j.chest.2019.02.004.

    Article  PubMed  Google Scholar 

  79. El-Kersh K, Zhao C, Elliott G, et al. Derivation of a risk score (REVEAL-ECHO) based on echocardiographic parameters of patients with pulmonary arterial hypertension. Chest. 2023;163(5):1232–44. https://doi.org/10.1016/j.chest.2022.12.045.

    Article  PubMed  Google Scholar 

  80. Forfia PR, Vaidya A, Wiegers SE. Pulmonary heart disease: the heart-lung interaction and its impact on patient phenotypes. Pulm Circ. 2013;3(1):5–19. https://doi.org/10.4103/2045-8932.109910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hemnes AR, Beck GJ, Newman JH, et al. PVDOMICS: a multi-center study to improve understanding of pulmonary vascular disease Through Phenomics. Circ Res. 2017;121(10):1136–9. https://doi.org/10.1161/CIRCRESAHA.117.311737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barry T, Farina JM, Chao CJ, et al. The role of artificial intelligence in echocardiography. J Imaging. 2023;9(2):50. https://doi.org/10.3390/jimaging9020050.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Seetharam K, Raina S, Sengupta PP. The role of artificial intelligence in echocardiography. Curr Cardiol Rep. 2020;22(9):99. https://doi.org/10.1007/s11886-020-01329-7.

  84. Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic clustering of left ventricular diastolic function parameters. JACC Cardiovasc Imaging. 2019;12(7):1149–1161. https://doi.org/10.1016/j.jcmg.2018.02.005.

  85. Shad R, Quach N, Fong R, et al. Predicting post-operative right ventricular failure using video-based deep learning. Nat Commun. 2021;12(1):5192. https://doi.org/10.1038/s41467-021-25503-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sengupta PP, Andrikopoulou E, Choi AD, et al. Cardiovascular point of care ultrasound: current value and vision for future use. Published online March 23, 2023. Available at: https://www.acc.org/About-ACC/Innovation/POCUS.

  87. Dykes JC, Kipps AK, Chen A, Nourse S, Rosenthal DN, Selamet Tierney ES. Parental Acquisition of echocardiographic images in pediatric heart transplant patients using a handheld device: a pilot telehealth study. J Am Soc Echocardiogr. 2019;32(3):404–11. https://doi.org/10.1016/j.echo.2018.10.007.

    Article  PubMed  Google Scholar 

  88. Schneider M, Aschauer S, Mascherbauer J, et al. Echocardiographic assessment of right ventricular function: current clinical practice. Int J Cardiovasc Imaging. 2019;35(1):49–56. https://doi.org/10.1007/s10554-018-1428-8.

    Article  PubMed  Google Scholar 

  89. Prada G, Pustavoitau A, Koenig S, Mitchell C, Stainback RF, Díaz-Gómez JL. Focused cardiac ultrasonography for right ventricular size and systolic function. N Engl J Med. 2022;387(21):e52. https://doi.org/10.1056/NEJMvcm2004089.

    Article  PubMed  Google Scholar 

  90. Ling LF, Obuchowski NA, Rodriguez L, Popovic Z, Kwon D, Marwick TH. Accuracy and interobserver concordance of echocardiographic assessment of right ventricular size and systolic function: a quality control exercise. J Am Soc Echocardiogr. 2012;25(7):709–13. https://doi.org/10.1016/j.echo.2012.03.018.

    Article  PubMed  Google Scholar 

  91. Dindane Z, Winkler A, Linke A, Sveric K. Evaluating the feasibility of using artificial intelligence for right ventricle function analysis in a routine clinical setting (Abstract). Eur Heart J - Cardiovasc Imaging. 2023;24(Supplement_1). https://academic.oup.com/ehjcimaging/article/24/Supplement_1/jead119.110/7198882.

  92. Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 2021;6(6):624. https://doi.org/10.1001/jamacardio.2021.0185.

    Article  PubMed  Google Scholar 

  93. Baum E, Tandel MD, Ren C, et al. Use of artificial intelligence for acquisition of limited echocardiograms: a randomized controlled trial for educational outcomes. Med Educ. 2023. https://doi.org/10.1101/2023.04.12.23288497.

  94. Labs RB, Vrettos A, Loo J, Zolgharni M. Automated assessment of transthoracic echocardiogram image quality using deep neural networks. Intell Med. Published online August 2022:S2667102622000705. https://doi.org/10.1016/j.imed.2022.08.001.

  95. Hsia BC, Subramaniam V, Singh S, et al. Abstract 10891: artificial intelligence echocardiographic detection of right ventricular dysfunction in patients with high-risk pulmonary embolism. Circulation. 2022;146(Suppl_1):A10891-A10891.  https://doi.org/10.1161/circ.146.suppl_1.10891.

  96. McConnell MV, Wu HH. Respiratory-mode display of echocardiographic images highlights effects of pericardial disease. JACC Cardiovasc Imaging. 2013;6(8):917–9. https://doi.org/10.1016/j.jcmg.2012.12.013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.O. and F.H. wrote the main text and prepared the final figures and tables. P.S. contributed to writing the POCUS and AI sections and Table 2. B.C. contributed to writing the phenotyping section and Fig. 1. M.V.M. contributed to AI sections and overall editing and idea generation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Christian O’Donnell.

Ethics declarations

Conflict of Interest

Michael V. McConnell reports former employee (until 2022) of Google Health, outside the submitted work. In addition, Dr. McConnell has a patent US 10219787 (Respiratory mode) issued and is a member of the ACC POCUS Innovation Work Group and the AHA Health Tech Advisory Group. Francois Haddad received research funding from Janssen on computational approaches to surrogate end-point in pulmonary hypertension and evaluating automation of right heart analysis in Pulmonary Hypertension using US2ai software. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donnell, C., Sanchez, P.A., Celestin, B. et al. The Echocardiographic Evaluation of the Right Heart: Current and Future Advances. Curr Cardiol Rep 25, 1883–1896 (2023). https://doi.org/10.1007/s11886-023-02001-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-02001-6

Keywords

Navigation