Skip to main content
Log in

Non-contrast-enhanced magnetic resonance urography for measuring split kidney function in pediatric patients with hydronephrosis: comparison with renal scintigraphy

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Split kidney function (SKF) is critical for treatment decision in pediatric patients with hydronephrosis and is commonly measured using renal scintigraphy (RS). Non-contrast-enhanced magnetic resonance urography (NCE-MRU) is increasingly used in clinical practice. This study aimed to investigate the feasibility of using NCE-MRU as an alternative to estimate SKF in pediatric patients with hydronephrosis, compared to RS.

Methods

Seventy-five pediatric patients with hydronephrosis were included in this retrospective study. All patients underwent NCE-MRU and RS within 2 weeks. Kidney parenchyma volume (KPV) and texture analysis parameters were obtained from T2-weighted (T2WI) in NCE-MRU. The calculated split KPV (SKPV) percent and texture analysis parameters percent of left kidney were compared with the RS-determined SKF.

Results

SKPV showed a significant positive correlation with SKF (r = 0.88, p < 0.001), while inhomogeneity was negatively correlated with SKF (r =  − 0.68, p < 0.001). The uncorrected and corrected prediction models of SKF were established using simple and multiple linear regression. Bland–Altman plots demonstrated good agreement of both predictive models. The residual sum of squares of the corrected prediction model was lower than that of the uncorrected model (0.283 vs. 0.314) but not statistically significant (p = 0.662). Subgroup analysis based on different MR machines showed correlation coefficients of 0.85, 0.95, and 0.94 between SKF and SKPV for three different scanners, respectively (p < 0.05 for all).

Conclusions

NCE-MRU can be used as an alternative method for estimating SKF in pediatric patients with hydronephrosis when comparing with RS. Specifically, SKPV proves to be a simple and universally applicable indicator for predicting SKF.

Graphical Abstract

A higher resolution version of the Graphical abstract is available asSupplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Majd M, Bar-Sever Z, Santos AI, De Palma D (2018) The SNMMI and EANM procedural guidelines for diuresis renography in infants and children. J Nucl Med 59:1636–1640. https://doi.org/10.2967/jnumed.118.215921

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arora S, Yadav P, Kumar M, Singh SK, Sureka SK, Mittal V, Ansari MS (2015) Predictors for the need of surgery in antenatally detected hydronephrosis due to UPJ obstruction–a prospective multivariate analysis. J Pediatr Urol 11:241–248. https://doi.org/10.1016/j.jpurol.2015.02.008

    Article  Google Scholar 

  3. Radmayr C, Bogaert G, Burgu B, Castagnetti MS, Dogan HS, Kelly FO, Quaedackers J, Rawashdeh YFH, Silay MS, T Hoen LA, Kennedy UK, Gnech M, Skott M, van Uitert A, Zachou A, Darraugh JA, Radmayr C, Bogaert G, Burgu B, Castagnetti MS, Dogan HS, Kelly FO, Quaedackers J, Rawashdeh YFH, Silay MS, T Hoen LA, Kennedy UK, Gnech M, Skott M, van Uitert A, Zachou A, Darraugh JA (2023) EAU Guidelines on paediatric urology. ISBN 978–94–92671–19–6

  4. McDaniel BB, Jones RA, Scherz H, Kirsch AJ, Little SB, Grattan-Smith JD (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2, anatomic and functional assessment of ureteropelvic junction obstruction [corrected]. AJR Am J Roentgenol 185:1608–1614. https://doi.org/10.2214/AJR.04.1574

    Article  PubMed  Google Scholar 

  5. Bar-Sever Z, Shammas A, Gheisari F, Vali R (2022) Pediatric nephro-urology: overview and updates in diuretic renal scans and renal cortical scintigraphy. Semin Nucl Med 52:419–431. https://doi.org/10.1053/j.semnuclmed.2021.12.002

    Article  PubMed  Google Scholar 

  6. Taylor AT (2014) Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 55:608–615. https://doi.org/10.2967/jnumed.113.133447

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Zhu Y, Zhu X, Yang G, Xu Y, Tang L (2015) CT-based renal volume measurements: correlation with renal function in patients with renal tumours. Clin Radiol 70:1445–1450. https://doi.org/10.1016/j.crad.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Xun Y, Li C, Han Y, Shen Y, Hu X, Hu D, Liu Z, Wang S, Li Z (2020) Estimation of renal function using unenhanced computed tomography in upper urinary tract stones patients. Front Med (Lausanne) 7:309. https://doi.org/10.3389/fmed.2020.00309

    Article  ADS  PubMed  Google Scholar 

  9. Halleck F, Diederichs G, Koehlitz T, Slowinski T, Engelken F, Liefeldt L, Friedersdorff F, Fuller TF, Magheli A, Neumayer HH, Budde K, Waiser J (2013) Volume matters: CT-based renal cortex volume measurement in the evaluation of living kidney donors. Transpl Int 26:1208–1216. https://doi.org/10.1111/tri.12195

    Article  CAS  PubMed  Google Scholar 

  10. Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910. https://doi.org/10.1681/ASN.2009121248

    Article  PubMed  Google Scholar 

  11. Chung AD, Schieda N, Shanbhogue AK, Dilauro M, Rosenkrantz AB, Siegelman ES (2016) MRI evaluation of the urothelial tract: pitfalls and solutions. AJR Am J Roentgenol 207:W108–W116. https://doi.org/10.2214/AJR.16.16348

    Article  PubMed  Google Scholar 

  12. Dickerson EC, Dillman JR, Smith EA, DiPietro MA, Lebowitz RL, Darge K (2015) Pediatric MR urography: indications, techniques, and approach to review. Radiographics 35:1208–1230. https://doi.org/10.1148/rg.2015140223

    Article  PubMed  Google Scholar 

  13. Gallo-Bernal S, Patino-Jaramillo N, Calixto CA, Higuera SA, Forero JF, Lara FJ, Góngora C, Gee MS, Ghoshhajra B, Medina HM (2022) Nephrogenic systemic fibrosis in patients with chronic kidney disease after the use of gadolinium-based contrast agents: a review for the cardiovascular imager. Diagnostics (Basel) 12:1816. https://doi.org/10.3390/diagnostics12081816

    Article  CAS  PubMed  Google Scholar 

  14. Khrichenko D, Darge K (2010) Functional analysis in MR urography - made simple. Pediatr Radiol 40:182–199. https://doi.org/10.1007/s00247-009-1458-4

    Article  PubMed  Google Scholar 

  15. Giganti F, Antunes S, Salerno A, Ambrosi A, Marra P, Nicoletti R, Orsenigo E, Chiari D, Albarello L, Staudacher C, Esposito A, Del MA, De Cobelli F (2017) Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol 27:1831–1839. https://doi.org/10.1007/s00330-016-4540-y

    Article  PubMed  Google Scholar 

  16. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  17. Lu J, Hu D, Tang H, Hu X, Shen Y, Li Z, Peng Y, Kamel I (2019) Assessment of tumor heterogeneity: differentiation of periampullary neoplasms based on CT whole-lesion histogram analysis. Eur J Radiol 115:1–9. https://doi.org/10.1016/j.ejrad.2019.03.021

    Article  PubMed  Google Scholar 

  18. Park H, Kim KA, Jung JH, Rhie J, Choi SY (2020) MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Eur Radiol 30:4201–4211. https://doi.org/10.1007/s00330-020-06835-4

    Article  PubMed  Google Scholar 

  19. Kline TL, Korfiatis P, Edwards ME, Bae KT, Yu A, Chapman AB, Mrug M, Grantham JJ, Landsittel D, Bennett WM, King BF, Harris PC, Torres VE, Erickson BJ (2017) Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. Kidney Int 92:1206–1216. https://doi.org/10.1016/j.kint.2017.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu B, Huang C, Fan X, Li F, Zhang J, Song Z, Zhi N, Ding J (2022) Application of MR imaging features in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy and normal subjects. Front Endocrinol (Lausanne) 13:846407. https://doi.org/10.3389/fendo.2022.846407

    Article  PubMed  Google Scholar 

  21. Grzywińska M, Jankowska M, Banach-Ambroziak E, Szurowska E, Dębska-Ślizień A (2020) Computation of the texture features on T2-weighted images as a novel method to assess the function of the transplanted kidney: primary research. Transplant Proc 52:2062–2066. https://doi.org/10.1016/j.transproceed.2020.02.084

    Article  PubMed  Google Scholar 

  22. Gates GF (1983) Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med 8:400–407. https://doi.org/10.1097/00003072-198309000-00003

    Article  CAS  PubMed  Google Scholar 

  23. Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009. https://doi.org/10.1007/s00467-006-0410-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tang Y, Yamashita Y, Namimoto T, Abe Y, Nishiharu T, Sumi S, Takahashi M (1996) The value of MR urography that uses HASTE sequences to reveal urinary tract disorders. AJR Am J Roentgenol 167:1497–1502. https://doi.org/10.2214/ajr.167.6.8956584

    Article  CAS  PubMed  Google Scholar 

  25. Lange D, Helck A, Rominger A, Crispin A, Meiser B, Werner J, Fischereder M, Stangl M, Habicht A (2018) Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study. Transpl Int 31:773–780. https://doi.org/10.1111/tri.13150

    Article  CAS  PubMed  Google Scholar 

  26. Shi W, Liang X, Wu N, Zhang H, Yuan X, Tan Y (2020) Assessment of split renal function using a combination of contrast-enhanced CT and serum creatinine values for glomerular filtration rate estimation. AJR Am J Roentgenol 215:142–147. https://doi.org/10.2214/AJR.19.22125

    Article  PubMed  Google Scholar 

  27. Lal H, Singh P, Yadav P, Singh A, Singh UP, Sureka SK, Kapoor R (2020) Role of preoperative MR volumetry in patients with renal cell carcinoma for prediction of postoperative renal function after radical nephrectomy and nephron sparing surgery. Int Braz J Urol 46:234–241. https://doi.org/10.1590/S1677-5538.IBJU.2019.0217

    Article  PubMed  PubMed Central  Google Scholar 

  28. Siedek F, Haneder S, Dörner J, Morelli JN, Chon SH, Maintz D, Houbois C (2019) Estimation of split renal function using different volumetric methods: inter- and intraindividual comparison between MRI and CT. Abdom Radiol (NY) 44:1481–1492. https://doi.org/10.1007/s00261-018-1857-9

    Article  PubMed  Google Scholar 

  29. Liang P, Xu C, Tripathi P, Li J, Li A, Hu D, Kamel I, Li Z (2021) One-stop assessment of renal function and renal artery in hypertensive patients with suspected renal dysfunction: non-enhanced MRI using spatial labeling with multiple inversion pulses. Eur Radiol 31:94–103. https://doi.org/10.1007/s00330-020-07088-x

    Article  CAS  PubMed  Google Scholar 

  30. Li Q, Wang D, Zhu X, Shen K, Xu F, Chen Y (2018) Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease. Eur J Radiol 108:194–200. https://doi.org/10.1016/j.ejrad.2018.10.002

    Article  PubMed  Google Scholar 

  31. Liang P, Li S, Xu C, Li J, Tan F, Hu D, Kamel I, Li Z (2021) Assessment of renal function using magnetic resonance quantitative histogram analysis based on spatial labeling with multiple inversion pulses. Ann Transl Med 9:1614. https://doi.org/10.21037/atm-21-2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang YD, Wu CJ, Wang Q, Zhang J, Wang XN, Liu XS, Shi HB (2015) Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol 205:W193–W201. https://doi.org/10.2214/AJR.14.13802

    Article  PubMed  Google Scholar 

  33. Liu HF, Wang Q, Du YN, Ding JL, Zhang JG, Xing W (2021) Whole-liver histogram analysis of blood oxygen level-dependent functional magnetic resonance imaging in evaluating hepatic fibrosis. Ann Palliat Med 10:2567–2576. https://doi.org/10.21037/apm-20-1753

    Article  PubMed  Google Scholar 

  34. Wang S, Meng M, Zhang X, Wu C, Wang R, Wu J, Sami MU, Xu K (2018) Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest. Oncol Lett 15:7297–7304. https://doi.org/10.3892/ol.2018.8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mo X, Chen W, Chen S, Chen Z, Guo Y, Chen Y, Wu X, Zhang L, Chen Q, Jin Z, Li M, Chen L, You J, Xiong Z, Zhang B, Zhang S (2023) MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study. Insights Imaging 14:28. https://doi.org/10.1186/s13244-023-01370-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang Z, Wang Y, Ding J, Yu S, Zhang J, Zhou H, Di J, Xing W (2020) Susceptibility weighted imaging (SWI) for evaluating renal dysfunction in type 2 diabetes mellitus: a preliminary study using SWI parameters and SWI-based texture features. Ann Transl Med 8:1673. https://doi.org/10.21037/atm-20-7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chandarana H, Rosenkrantz AB, Mussi TC, Kim S, Ahmad AA, Raj SD, McMenamy J, Melamed J, Babb JS, Kiefer B, Kiraly AP (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798. https://doi.org/10.1148/radiol.12111281

    Article  PubMed  Google Scholar 

  38. Breysem L, De Rechter S, De Keyzer F, Smet MH, Bammens B, Van Dyck M, Hofmans M, Oyen R, Levtchenko E, Mekahli D (2018) 3DUS as an alternative to MRI for measuring renal volume in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 33:827–835. https://doi.org/10.1007/s00467-017-3862-6

    Article  PubMed  Google Scholar 

  39. Damasio MB, Bodria M, Dolores M, Durand E, Sertorio F, Wong M, Dacher JN, Hassani A, Pistorio A, Mattioli G, Magnano G, Vivier PH (2019) Comparative study between functional MR urography and renal scintigraphy to evaluate drainage curves and split renal function in children with congenital anomalies of kidney and urinary tract (CAKUT). Front Pediatr 7:527. https://doi.org/10.3389/fped.2019.00527

    Article  PubMed  Google Scholar 

  40. Brown BP, Simoneaux SF, Dillman JR, Rigsby CK, Iyer RS, Alazraki AL, Bardo D, Chan SS, Chandra T, Dorfman SR, Garber MD, Moore MM, Nguyen JC, Peters CA, Shet NS, Siegel A, Waseem M, Karmazyn B (2020) ACR Appropriateness Criteria® Antenatal Hydronephrosis-Infant. J Am Coll Radiol 17:S367–S379. https://doi.org/10.1016/j.jacr.2020.09.017

    Article  PubMed  Google Scholar 

  41. Rodigas J, Kirsch H, John U, Seifert P, Winkens T, Stenzel M, Mentzel HJ (2018) Static and functional MR urography to assess congenital anomalies of the kidney and urinary tract in infants and children: comparison with MAG3 renal scintigraphy and sonography. AJR Am J Roentgenol 211:193–203. https://doi.org/10.2214/AJR.17.17891

    Article  PubMed  Google Scholar 

  42. Houat AP, Guimarães C, Takahashi MS, Rodi GP, Gasparetto T, Blasbalg R, Velloni FG (2021) Congenital anomalies of the upper urinary tract: a comprehensive review. Radiographics 41:462–486. https://doi.org/10.1148/rg.2021200078

    Article  PubMed  Google Scholar 

  43. Mahmoud H, Buchanan C, Francis ST, Selby NM (2016) Imaging the kidney using magnetic resonance techniques: structure to function. Curr Opin Nephrol Hypertens 25:487–493. https://doi.org/10.1097/MNH.0000000000000266

    Article  PubMed  Google Scholar 

  44. Peperhove M, Vo CV, Jang MS, Gutberlet M, Hartung D, Tewes S, Warnecke G, Fegbeutel C, Haverich A, Gwinner W, Lehner F, Bräsen JH, Haller H, Wacker F, Gueler F, Hueper K (2018) Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 28:44–50. https://doi.org/10.1007/s00330-017-4943-4

    Article  PubMed  Google Scholar 

  45. Serai SD, Hu HH, Ahmad R, White S, Pednekar A, Anupindi SA, Lee EY (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053. https://doi.org/10.2214/AJR.19.21987

    Article  PubMed  Google Scholar 

  46. Brink A (2022) Pitfalls of radionuclide renal imaging in pediatrics. Semin Nucl Med 52:432–444. https://doi.org/10.1053/j.semnuclmed.2021.12.001

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 82071889).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Meng or Yonghua Niu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 188 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Wan, D., Li, S. et al. Non-contrast-enhanced magnetic resonance urography for measuring split kidney function in pediatric patients with hydronephrosis: comparison with renal scintigraphy. Pediatr Nephrol 39, 1447–1457 (2024). https://doi.org/10.1007/s00467-023-06224-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06224-1

Keywords

Navigation