Skip to main content
Log in

Coherent Mid-IR Supercontinuum in a Hollow Core Fiber Filled with a Mixture of Deuterium and Nitrogen

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The conversion of energy into the mid-IR region (>2.2 μm) upon pumping by chirped picosecond pulses at a wavelength of 1.56 μm into a gas-filled hollow-core revolver-type fiber is studied numerically. It is shown that the combined cascade SRS process at vibrational-rotational levels in a D2/N2 mixture increases the degree of supercontinuum coherence and the maximum quantum efficiency of SRS conversion compared to a single-cascade process in deuterium. The possibility of obtaining a supercontinuum in the 3-μm band with a spectral width of 1800 nm and with a maximum quantum conversion efficiency of 48% in the range of D2 and N2 partial pressures up to 50 atm was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Su, R., Kirillin, M., Chang, E.W., Sergeeva, E., Yun, S.H., and Mattsson, L., Opt. Express, 2014, vol. 22, p. 1584.

    Google Scholar 

  2. Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., and Fujimoto, J.G., Opt. Lett., 2001, vol. 26, p. 608.

    Article  ADS  Google Scholar 

  3. Nagarajan, V., Johnson, E., Schellenberg, P., Parson, W., and Windeler, R., Rev. Sci. Instrum., 2002, vol. 73, p. 4145.

    Article  ADS  Google Scholar 

  4. Grassani, D., Tagkoudi, E., Guo, H., Herkommer, C., Yang, F., Kippenberg, T.J., and Brès, C.-S., Nat. Commun., 2019, vol. 10, p. 1553.

    Article  ADS  Google Scholar 

  5. Elu, U., Baudisch, M., Tani, F., Frosz, M.H., Kottig, F., Ermolov, A., Russel, P.St.J., and Biegert, J., Optica, 2017, vol. 4, p. 1024.

    Article  ADS  Google Scholar 

  6. Elu, U., Maidment, L., Vamos, L., Tani, F., Novoa, D., Frosz, M., Badikov, V., Badikov, D., Petrov, V., Russel, P.St.J., and Biegert, J., Nat. Photonics, 2021, vol. 15, p. 277. https://doi.org/10.1038/s41566-020-00735-1

    Article  ADS  Google Scholar 

  7. Mitrofanov, A.V., Sidorov-Biryukov, D.A., Nazarov, M.M, Voronin, A.A., Rozhko, M.V., Shutov, A.D., Ryabchuk, S.V., Serebryannikov, E.E., Fedotov, A.V., and Zheltikov, A.M., Optica, 2020, vol. 7, p. 15.

    Article  ADS  Google Scholar 

  8. Hasan, M.I., Akhmediev, N., and Chang, W.W., Opt. Lett., 2016, vol. 41, p. 5122.

    Article  ADS  Google Scholar 

  9. Adamu, A.J., Habib, M.S., Peterson, C.R., Lopez, J.E.A., Zhou, B., Schulzgen, A., Bache, M., Amezcua-Correa, R., Bang, O., and Marcos, C., Sci. Rep., 2019, vol. 9, p. 4446.

    Article  ADS  Google Scholar 

  10. Gladyshev, A.V., Kosolapov, A.F., Kolyadin, A.N., Astapovich, M.S., Pryamikov, A.D., Likhachev, M.E., and Bufetov, I.A., Quantum Electron., 2017, vol. 47, p. 1078.

    Article  ADS  Google Scholar 

  11. Li, Z., Huang, W., Cui, Y., and Wang, Z., Opt. Lett., 2018, vol. 43, p. 4671.

    Article  ADS  Google Scholar 

  12. Gladyshev, A.V., Astapovich, M.S., Yatsenko, Yu.P., Kosolapov, A.F., Okhrimchuk, A.G., and Bufetov, I.A., Quantum Electron., 2019, vol. 49, p. 1089.

    Article  ADS  Google Scholar 

  13. Gladyshev, A., Yatsenko, Yu., Kolyadin, A., Kompanets, V., and Bufetov, I., Opt. Mat. Express, 2020, vol. 10, p. 3081.

    Article  ADS  Google Scholar 

  14. Yatsenko, Yu.P., Gladyshev, A.V., and Bufetov, I.A., Quantum Electron., 2021, vol. 51, p. 1068.

    Article  ADS  Google Scholar 

  15. Krylov, A.A., Gladyshev, A.V., Senators, A.K., Yatsenko, Yu.P., Kolyadin, A.N., Kosolapov, A.F., Khudyakov, M.M., Likhachev, M.E., and Bufetov, I.A., Bull. Lebedev Phys. Inst., 2022, vol. 49, suppl. 1, pp. S7–S20. https://doi.org/10.3103/S1068335622130048

  16. Mousavi, S.A., Mulvad, H.C.H., Wheeler, N.V., Horak, P., Hayes, J., Chen, Y., Bradley, T.D., Alam, S., Sandoghchi, S.R., Fokoua, E.N., Richardson, D.J., and Poletti, F., Opt. Express, 2018, vol. 26, p. 8866.

    Article  ADS  Google Scholar 

  17. Gladyshev, A.V., Kosolapov, A.F., Khudyakov, M.M., Yatsenko, Y.P., Kolyadin, A.N., Krylov, A.A., Pryamikov, A.D., Biriukov, A.S., Likhachev, M.E., Bufetov, I.A., and Dianov, E.M., IEEE J. Sel. Top. Quantum Electron., 2018, vol. 24, p. 1.

    Article  Google Scholar 

  18. Chen, Y., Sidorenko, P., Antonio-Lopez, E., Amezcua-Correa, R., and Wise, F., Optica Publishing Group, 2021, vol. 10, p. 12360.

  19. Gao, S.-F., Wang, Y.-Y., Belli, F., Brahms, C., Wang, P., and Travers, J.C., Laser Photonics Rev., 2022, vol. 16, p. 2100426.

  20. Gladyshev, A.V., Dubrovsky, D.S., Zhuravleva, E.E., Kosolapov, A.F., Yatsenko, Yu.P., and Bufetov, I.A., Optoelectron., Instrum. Data Process., 2023, vol. 59, no. 1, pp. 10–17. https://doi.org/10.3103/S8756699023010089

  21. Dudley, J. and Taylor, R., Supercontinuum Generation in Optical Fibers, Cambridge: University Press, 2010.

    Book  Google Scholar 

  22. Ottush, J.J. and Rockwell, D.A., IEEE J. Quantum Electron., 1988, vol. 24, p. 2076.

    Article  ADS  Google Scholar 

  23. Wahlstrand, J.K., Zahedpour, S., Cheng, Y.-H., Palastro, J.P., and Mildberg, H.M., Phys. Rev. A, 2015, vol. 92, p. 063828.

  24. Nibbering, E.T.J., Grillon, G., Franco, M.A., Prade, B.S., and Mysyrowicz, A., J. Opt. Soc. Am. B, 1997, vol. 14, p. 650.

    Article  ADS  Google Scholar 

  25. Larsen, T., Z. Phys., 1936, vol. 100, p. 543. https://doi.org/10.1007/BF01336710

    Article  ADS  Google Scholar 

  26. Börzsönyi, Á., Heiner, Z., Kovács, A.P., Kalashnikov, M.P., and Osvay, K., Appl. Opt., 2008, vol. 47, p. 4856.

    Article  ADS  Google Scholar 

  27. Dudley, J.M., Genty, G., Coen, S., Rev. Mod. Phys., 2002, vol. 78, p. 1135.

    Article  ADS  Google Scholar 

  28. Yatsenko, Yu.P., Krylov, A.A., Pryamikov, A.D., Kosolapov, A.F., Kolyadin, A.N., Gladyshev, A.V., and Bufetov, I.A., Quantum Electron., 2016, vol. 46, p. 617.

    Article  ADS  Google Scholar 

  29. Yatsenko, Yu.P., Pleteneva, E.N., Okhrimchuk, A.G., Gladyshev, A.V., Kosolapov, A.F., Kolyadin, A.N., and Bufetov, I.A., Quantum Electron., 2017, vol. 47, p. 553.

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 19-12-00361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Yatsenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatsenko, Y.P., Gladyshev, A.V. & Bufetov, I.A. Coherent Mid-IR Supercontinuum in a Hollow Core Fiber Filled with a Mixture of Deuterium and Nitrogen. Bull. Lebedev Phys. Inst. 50 (Suppl 9), S996–S1005 (2023). https://doi.org/10.3103/S106833562321011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562321011X

Keywords:

Navigation