Skip to main content
Log in

Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk-Borne Pathogen Listeria monocytogenes

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC–MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abbas, M. N., Khattak, B., Sajid, A., Islam, T., Jamal, Q., & Munir, S. (2013). Biochemical and bacteriological analysis of cows’ milk samples collected from District Peshawar. International Journal of Pharmaceutical Sciences Review and Research, 21, 221–2261.

    Google Scholar 

  • Anjali Kumar, S., Korra, T., Thakur, R., Arutselvan, R., Kashyap, A. S., Nehela, Y., Chaplygin, V., Minkina, T., & Keswani, C. (2023). Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, 8, 100154.

    Article  Google Scholar 

  • Arasu, A., Pingley, V., Prabha, N., Ravikumar, O. V. R., Annathurai, K., Kasirajan, S., Govindasamy, A., Alwahibi, M. S., Elshikh, M. S., Abdel Gawwad, M. R., et al. (2021). Impact and fungitoxic spectrum of Trachyspermum ammi against Candida albicans, an opportunistic pathogenic fungus commonly found in human gut that causes Candidiasis infection. Journal of Infection and Public Health, 14, 1854–1863.

    Article  PubMed  Google Scholar 

  • Beigoli, S., Behrouz, S., Memar Zia, A., Ghasemi, S. Z., Boskabady, M., Marefati, N., Kianian, F., Khazdair, M. R., El-Seedi, H., & Boskabady, M. H. (2021). Effects of Allium cepa and its constituents on respiratory and allergic disorders: A comprehensive review of experimental and clinical evidence. Evidence-Based Complementary and Alternative Medicine, 2021, 5554259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benkeblia, N. (2005). Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technology, 48, 753–759.

    Article  CAS  Google Scholar 

  • Beristain-Bauza, S. D. C., Hernández-Carranza, P., Cid-Pérez, T. S., Ávila-Sosa, R., Ruiz-López, I. I., & Ochoa-Velasco, C. E. (2019). Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Reviews International, 35, 407–426.

    Article  CAS  Google Scholar 

  • Brooks, D. R., Hoberg, E. P., Boeger, W. A., & Trivellone, V. (2022). Emerging infectious disease: An underappreciated area of strategic concern for food security. Transboundary and Emerging Diseases, 69, 254–267.

    Article  PubMed  Google Scholar 

  • Cheng, C., Sun, J., Yu, H., Ma, T., Guan, C., Zeng, H., Zhang, X., Chen, Z., & Song, H. (2020). Listeriolysin O pore-forming activity is required for ERK1/2 phosphorylation during Listeria monocytogenes infection. Frontiers in Immunology, 11, 1146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Oliveira Mota, J., Boué, G., Prévost, H., Maillet, A., Jaffres, E., Maignien, T., Arnich, N., Sanaa, M., & Federighi, M. (2021). Environmental monitoring program to support food microbiological safety and quality in food industries: A scoping review of the research and guidelines. Food Control, 130, 108283.

    Article  Google Scholar 

  • Deddefo, A., Mamo, G., Asfaw, M., & Amenu, K. (2023). Factors affecting the microbiological quality and contamination of farm bulk milk by Staphylococcus aureus in dairy farms in Asella, Ethiopia. BMC Microbiology, 23, 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupeyron, M., Baril, T., Bass, C., & Hayward, A. (2020). Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mobile DNA, 11, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farber, J. M., & Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiological Reviews, 55, 476–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farber, J. M., Zwietering, M., Wiedmann, M., Schaffner, D., Hedberg, C. W., Harrison, M. A., Hartnett, E., Chapman, B., Donnelly, C. W., Goodburn, K. E., et al. (2021). Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control, 123, 107601.

    Article  CAS  Google Scholar 

  • Furuse, Y., Suzuki, A., Kamigaki, T., & Oshitani, H. (2009). Evolution of the M gene of the influenza A virus in different host species: Large-scale sequence analysis. Virology Journal, 6, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginovyan, M., Ayvazyan, A., Nikoyan, A., Tumanyan, L., & Trchounian, A. (2020). Phytochemical screening and detection of antibacterial components from crude extracts of some armenian herbs using TLC-bioautographic technique. Current Microbiology, 77, 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  • Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology, 52, 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  • Guru, A., Murugan, R., & Arockiaraj, J. (2023). Histone acetyltransferases derived RW20 protects and promotes rapid clearance of Pseudomonas aeruginosa in zebrafish larvae. International Microbiology. https://doi.org/10.1007/s10123-023-00391-9

    Article  PubMed  Google Scholar 

  • Hannan, A., Humayun, T., Hussain, M. B., Yasir, M., & Sikandar, S. (2010). In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholerae. Journal of Ayub Medical College, Abbottabad, 22, 160–163.

    PubMed  Google Scholar 

  • Jamila, M., Ali, M. Z., Sultana, S., Islam, M. A., & Khatun, M. M. (2020). Isolation, identification and antibiotic sensitivity test of bacteria in raw cow milk obtained from different sources. EC Microbiology, 4, 32–41.

    Google Scholar 

  • Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7, 1–7.

    Article  Google Scholar 

  • Jayamanne, V. S., & Samarajeewa, U. (2001). Incidence and detection of Listeria monocytogenes in milk and milk products of Sri Lanka. Tropical Agricultural Research, 13, 42–50.

    Google Scholar 

  • Jeffs, E., Williman, J., Brunton, C., Gullam, J., & Walls, T. (2020). The epidemiology of listeriosis in pregnant women and children in New Zealand from 1997 to 2016: An observational study. BMC Public Health, 20, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  • John, J., Joy, W. C., & Jovana, K. (2020). Prevalence of Listeria spp. in produce handling and processing facilities in the Pacific Northwest. Food Microbiology, 90, 103468.

    Article  CAS  Google Scholar 

  • Kayode, A. J., & Okoh, A. I. (2022). Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and One Health perspective. PLoS One, 17, e0270993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, J. H. (1997). Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria. The Journal of Nihon University School of Dentistry, 39, 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Libera, K., Konieczny, K., Grabska, J., Szopka, W., Augustyniak, A., & Pomorska-Mól, M. (2022). Selected livestock-associated zoonoses as a growing challenge for public health. Infectious Disease Reports, 14, 63–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., He, X., Zhang, T., Zhao, K., Xiao, C., Tong, Z., Jin, L., He, N., Deng, Y., Li, S., et al. (2022). Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. Chinese Chemical Letters, 33, 1933–1935.

    Article  Google Scholar 

  • Lovett, J., Francis, D. W., & Hunt, J. M. (1987). Listeria monocytogenes in raw milk: Detection, incidence, and pathogenicity. Journal of Food Protection, 50, 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Manjunathan, T., Guru, A., Arokiaraj, J., & Gopinath, P. (2021). 6-Gingerol and semisynthetic 6-gingerdione counteract oxidative stress induced by ROS in zebrafish. Chemistry & Biodiversity, 18, e2100650.

    Article  CAS  Google Scholar 

  • Manjunathan, T., Guru, A., Haridevamuthu, B., Dandela, R., Arokiaraj, J., & Gopinath, P. (2023). 6-Gingerol derived semisynthetic analogs mitigates oxidative stress, reverses acrylamide induced neurotoxicity in zebrafish. New Journal of Chemistry, 47, 10488–10492.

    Article  CAS  Google Scholar 

  • Móricz, Á. M., Häbe, T. T., Ott, P. G., & Morlock, G. E. (2019). Comparison of high-performance thin-layer with overpressured layer chromatography combined with direct bioautography and direct analysis in real time mass spectrometry for tansy root. Journal of Chromatography A, 1603, 355–360.

    Article  PubMed  Google Scholar 

  • Morya, S., Amoah, A. E. D. D., & Snaebjornsson, S. O. (2020). Food poisoning hazards and their consequences over food safety. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for sustainable environment and health (pp. 383–400). Elsevier.

    Chapter  Google Scholar 

  • Murugan, R., Subramaniyan, S., Priya, S., Ragavendran, C., Arasu, M. V., Al-Dhabi, N. A., Choi, K. C., Guru, A., & Arockiaraj, J. (2023). Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. Aquatic Toxicology, 260, 106578.

    Article  PubMed  CAS  Google Scholar 

  • Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 19, 311–331.

    Article  PubMed  Google Scholar 

  • Ortiz, M. (2015). Antimicrobial activity of onion and ginger against two food borne pathogens Escherichia coli and Staphylococcus aureus. MOJ Food Processing & Technology, 1, 98–106.

    Article  Google Scholar 

  • Oyawoye, O. M., Olotu, T. M., Nzekwe, S. C., Idowu, J. A., Abdullahi, T. A., Babatunde, S. O., Ridwan, I. A., Batiha, G. E., Idowu, N., Alorabi, M., et al. (2022). Antioxidant potential and antibacterial activities of Allium cepa (onion) and Allium sativum (garlic) against the multidrug resistance bacteria. Bulletin of the National Research Centre, 46, 214.

    Article  Google Scholar 

  • Parthasarathy, V., & Rajendran, R. B. (2022). Isolation and molecular profiling of thermoresistant bacteria from chimneys of baking industries of Madurai, Tamilnadu, India. International Journal of Life Science and Pharma Research, 10, 73–76.

    Google Scholar 

  • Petrišič, N., Kozorog, M., Aden, S., Podobnik, M., & Anderluh, G. (2021). The molecular mechanisms of listeriolysin O-induced lipid membrane damage. Biochimica Et Biophysica Acta. Biomembranes, 1863, 183604.

    Article  PubMed  Google Scholar 

  • Pradhan, A. K., & Karanth, S. (2023). Zoonoses from animal meat and milk. In M. E. Knowles, L. E. Anelich, A. R. Boobis, & B. Popping (Eds.), Present knowledge in food safety (pp. 394–411). Elsevier.

    Chapter  Google Scholar 

  • Rosenow, E. M., & Marth, E. H. (1987). Growth of Listeria monocytogenes in skim, whole and chocolate milk, and in whipping cream during incubation at 4, 8, 13, 21 and 35 °C. Journal of Food Protection, 50, 452–460.

    Article  PubMed  Google Scholar 

  • Santas, J., Almajano, M. P., & Carbó, R. (2010). Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. International Journal of Food Science & Technology, 45, 403–409.

    Article  CAS  Google Scholar 

  • Sathi, D. A. S. (2022). An overview on chemical constituents and biological activities of Zingiber officinale. International Journal of Herbal Medicine, 10, 14–19.

    Article  Google Scholar 

  • Silva, N. C., Barbosa, L., Seito, L. N., & Fernandes, A., Jr. (2012). Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, 26, 1510–1514.

    Article  PubMed  CAS  Google Scholar 

  • Sudhakaran, G., Prathap, P., Guru, A., Haridevamuthu, B., Murugan, R., Almutairi, B. O., Almutairi, M. H., Juliet, A., Gopinath, P., & Arockiaraj, J. (2022a). Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Molecular and Cellular Biochemistry, 477, 2387–2401.

    Article  PubMed  CAS  Google Scholar 

  • Sudhakaran, G., Rajesh, R., Murugan, R., Velayutham, M., Guru, A., Boopathi, S., Muthupandian, S., Gopinath, P., & Arockiaraj, J. (2022b). Nimbin analog N2 alleviates high testosterone induced oxidative stress in CHO cells and alters the expression of Tox3 and Dennd1a signal transduction pathway involved in the PCOS zebrafish. Phytotherapy Research, 37, 1449–1461.

    Article  PubMed  Google Scholar 

  • Thakkar, S., Anklam, E., Xu, A., Ulberth, F., Li, J., Li, B., Hugas, M., Sarma, N., Crerar, S., Swift, S., et al. (2020). Regulatory landscape of dietary supplements and herbal medicines from a global perspective. Regulatory Toxicology and Pharmacology, 114, 104647.

    Article  PubMed  Google Scholar 

  • Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9, 2041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlčko, T., Rathod, N. B., Kulawik, P., Ozogul, Y., & Ozogul, F. (2022). The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. Advances in Food and Nutrition Research, 102, 275–339.

    Article  PubMed  Google Scholar 

  • Winand, R., Bogaerts, B., Hoffman, S., Lefevre, L., Delvoye, M., Braekel, J. V., Fu, Q., Roosens, N. H., Keersmaecker, S. C., & Vanneste, K. (2019). Targeting the 16S rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies. International Journal of Molecular Sciences, 21, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakubu, Y., Salihu, M. D., Faleke, O. O., Abubakar, M. B., Junaidu, A. U., Magaji, A. A., Gulumbe, M. L., & Aliyu, R. M. (2012). Prevalence and antibiotic susceptibility of Listeria monocytogenes in raw milk from cattle herds within Sokoto Metropolis, Nigeria. Sokoto Journal of Veterinary Sciences, 10, 13–17.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers supporting project number (RSP2023R190), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AA, NP, DD, PKI: conceptualization, methodology, formal analysis, investigation. KMA, DAAF, RAA, DSH: resources, MM: data curation, visualization, JZT, AG, JA: writing-original draft, supervision.

Corresponding authors

Correspondence to Abirami Arasu, Jehad Zuhair Tayyeb, Ajay Guru or Jesu Arockiaraj.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest regarding this work.

Ethical statements and informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasu, A., Prabha, N., Devi, D. et al. Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk-Borne Pathogen Listeria monocytogenes. J Microbiol. 61, 993–1011 (2023). https://doi.org/10.1007/s12275-023-00086-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00086-w

Keywords

Navigation