Skip to main content

Advertisement

Log in

DSPE-PEG2000-methotrexate nanoparticles encapsulating phenobarbital sodium kill cancer cells by inducing pyroptosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cancer is a life-threatening disease worldwide. Nanomedicine and nanodelivery systems are recently developed scientific field that employs specific materials in the nanoscale range to deliver drugs. Lipid-based nanoparticles are an ideal delivery system since they exhibit many advantages, including high bioavailability, self-assembly, formulation simplicity, and the ability to exhibit a plethora of physicochemical properties. Herein, we report that phenobarbital sodium can kill cancer cells by using the DSPE-PEG2000-methotrexate nanoparticle delivery system, which can target folate receptors that are usually overexpressed on a variety of cancer cells. The released phenobarbital then executes cancer cells by inducing pyroptosis. Results from our animal model further indicate that the nanomedicine of nanoparticle-encapsulated phenobarbital sodium is a promising anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All the data and material are available upon appropriate request.

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol Biomark Prev 25:16–27. https://doi.org/10.1158/1055-9965.Epi-15-0578

    Article  Google Scholar 

  2. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P et al (2022) Early detection of cancer. Science 375:eaay9040. https://doi.org/10.1126/science.aay9040. Published online EpubMar 18

  3. Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E et al (2022) Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 19:656–673. https://doi.org/10.1038/s41571-022-00672-8. Published online EpubOct

  4. Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, Gopalakrishnan V, Hudgens CW, Tetzlaff MT, Reuben JM et al (2019) Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunol Res 7:1025–1035. https://doi.org/10.1158/2326-6066.CIR-18-0619. Published online EpubJun

  5. Yan Y, Feng X, Li C, Lerut T, Li H (2022) Treatments for resectable esophageal cancer: from traditional systemic therapy to immunotherapy. Chin Med J (Engl) 135:2143–2156. https://doi.org/10.1097/cm9.0000000000002371. Published online EpubSep 20

  6. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13:246–254. https://doi.org/10.2174/1872211314666191224115211

  7. Ren WW, Xu SH, Sun LP, Zhang K (2022) Ultrasound-Based Drug Delivery System. Curr Med Chem 29:1342–1351. https://doi.org/10.2174/0929867328666210617103905. Published online EpubMar 4

  8. Zhang S, Sun J (2022) Nano-drug delivery system for the treatment of acute myelogenous leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 51:233–240. https://doi.org/10.3724/zdxbyxb-2022-0084. Published online EpubApr 25

  9. Shueng PW, Yu LY, Hou HH, Chiu HC, Lo CL (2022) Charge conversion polymer-liposome complexes to overcome the limitations of cationic liposomes in mitochondrial-targeting drug delivery. Int J Mol Sci 23. https://doi.org/10.3390/ijms23063080. Published online EpubMar ARTN 3080

  10. Sriwidodo A, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA (2022) Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon 8:e08934. https://doi.org/10.1016/j.heliyon.2022.e08934. Published online EpubFeb

  11. Hanafy NAN, Sheashaa RF, Moussa EA, Mahfouz ME (2023) Potential of curcumin and niacin-loaded targeted chitosan coated liposomes to activate autophagy in hepatocellular carcinoma cells: An in vitro evaluation in HePG2 cell line. International journal of biological macromolecules 245:125572. https://doi.org/10.1016/j.ijbiomac.2023.125572. Published online EpubAug 1

  12. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, Szebeni J, Ishida T (2019) PEGylated liposomes: immunological responses. Science and Technology of Advanced Materials 20:710–724. https://doi.org/10.1080/14686996.2019.1627174

  13. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. https://doi.org/10.1016/j.addr.2012.09.037. Published online EpubJan

  14. Krivić H, Himbert S, Rheinstädter MC (2022) Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. Membranes (Basel) 12. https://doi.org/10.3390/membranes12121226. Published online EpubDec 3

  15. Oğuzhan Kaya H, Karpuz M, Nur Topkaya S (2022) Electrochemical Analysis of Liposome‐encapsulated Colistimethate Sodium. Electroanalysis 34:1114–1120. https://doi.org/10.1002/elan.202100570

  16. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W (2022) Liposomes: structure, composition, types, and clinical applications. Heliyon 8:e09394. https://doi.org/10.1016/j.heliyon.2022.e09394. Published online EpubMay

  17. Shaw TK, Paul P (2022) Recent Approaches and Success of Liposome-Based Nano Drug Carriers for the Treatment of Brain Tumor. Curr Drug Deliv 19:815–829. https://doi.org/10.2174/1567201818666211213102308

    Article  CAS  PubMed  Google Scholar 

  18. Kesharwani P, Kumari K, Gururani R, Jain S, Sharma S (2022) Approaches to Address PK-PD Challenges of Conventional Liposome Formulation with Special Reference to Cancer, Alzheimer’s, Diabetes, and Glaucoma: An Update on Modified Liposomal Drug Delivery System. Curr Drug Metab 23:678–692. https://doi.org/10.2174/1389200223666220609141459

    Article  CAS  PubMed  Google Scholar 

  19. Zhang S, Contini C, Hindley JW, Bolognesi G, Elani Y, Ces O (2021) Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nat Commun 12:1673. https://doi.org/10.1038/s41467-021-21832-x. Published online EpubMar 15

  20. Maeda H, Matsumura Y (1989) Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit Rev Ther Drug 6:193–210

    CAS  Google Scholar 

  21. Lerman-Sagie T, Lerman P (1999) Phenobarbital still has a role in epilepsy treatment. J Child Neurol 14:820–821. https://doi.org/10.1177/088307389901401210. Published online EpubDec

  22. Li J, Yang D, Zhao D, Li N, Lin W (2019) Efficacy of phenobarbital and sodium valproate in treating convulsive epilepsy in rural northeast China. Seizure 71:207–213. https://doi.org/10.1016/j.seizure.2019.06.012. Published online EpubOct

  23. Yasiry Z, Shorvon SD (2012) How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in the last 100 years. Epilepsia 53:26–39. https://doi.org/10.1111/epi.12026.  Published online EpubDec

  24. Peraino C, Staffeldt EF, Haugen DA, Lombard LS, Stevens FJ, Fry RM (1980) Effects of Varying the Dietary Concentration of Phenobarbital on Its Enhan- cement of 2- Acetylaminofluorene-induced Hepatic Tumorigenesis1. Cancer Res 40:3268–3273

  25. Hino O, Kitagawa T, Nomura K, Sugano H (1984) Dose-response studies on promoting and anticarcino-genic effects of phenobarb-ital and DDT in the rat hepatocarcinogene-sis. Carcinogenesis 5:1653–1656

  26. Olsen JH, Wallin H, Boice JD Jr, Rask K, Schulgen G, Fraumeni JF Jr (1993) Phenobarbital, drug metabolism, and human cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2:449–452. Published online EpubSep-Oct

  27. Pereira MA, Klaunig JE, Freund SLH, Ruch RJ (1986) Effect of Phenobarbital on the Development of Liver Tumors in Juvenile and Adult Mice JNCI 77

  28. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693. https://doi.org/10.1016/s0169-409x(02)00042-x. Published online EpubSep 13

  29. Cavallaro G, Licciardi M, Salmaso S, Caliceti P, Gaetano G (2006) Folate-mediated targeting of polymeric conjugates of gemcitabine. Int J Pharm 307:258–269. https://doi.org/10.1016/j.ijpharm.2005.10.015. Published online EpubJan 13

  30. Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48. https://doi.org/10.1016/s0168-3659(97)00236-8. Published online EpubApr 30

  31. Moharil P, Wan Z, Pardeshi A, Li J, Huang H, Luo Z, Rathod S, Zhang Z, Chen Y, Zhang B et al (2022) Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm Sin B 12:1148–1162. https://doi.org/10.1016/j.apsb.2021.09.024. Published online EpubMar

  32. Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, Hossu M, Sun X, Chen W (2010) Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnol 1:19–28. https://doi.org/10.1007/s12645-010-0003-3

  33. Akhtar A, Ghali L, Wang SX, Bell C, Li D, Wen X (2019) Optimisation of Folate-Mediated Liposomal Encapsulated Arsenic Trioxide for Treating HPV-Positive Cervical Cancer Cells In Vitro. Int J Mol Sci 20. https://doi.org/10.3390/ijms20092156. Published online EpubApr 30

  34. Chatterji DC, Gallelli JF (1978) Thermal and photolytic decomposition of methotrexate in aqueous solutions. J Pharm Sci 67:526–531. https://doi.org/10.1002/jps.2600670422. Published online EpubApr

  35. Grim J, Chládek J, Martínková J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42:139–151. https://doi.org/10.2165/00003088-200342020-00003

  36. Bleyer WA (1978) The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 41:36–51. https://doi.org/10.1002/1097-0142(197801)41:1<36::aid-cncr2820410108>3.0.co;2-i. Published online EpubJan

  37. Pfister C, Gravis G, Fléchon A, Chevreau C, Mahammedi H, Laguerre B, Guillot A, Joly F, Soulié M, Allory Y et al (2022) Dose-Dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients With Nonmetastatic Muscle-Invasive Bladder Cancer: Results of the GETUG-AFU V05 VESPER Trial. J Clin Oncol 40:2013–2022. https://doi.org/10.1200/jco.21.02051. Published online EpubJun 20

  38. Corley C, Allen AR (2021) A Bibliometric Analysis of Cyclophosphamide, Methotrexate, and Fluorouracil Breast Cancer Treatments: Implication for the Role of Inflammation in Cognitive Dysfunction. Front Mol Biosci 8:683389. https://doi.org/10.3389/fmolb.2021.683389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Misra R, Upadhyay M, Perumal V, Mohanty S (2015) In vitro control release, cytotoxicity assessment and cellular uptake of methotrexate loaded liquid-crystalline folate nanocarrier. Biomed Pharmacother 69:102–110. https://doi.org/10.1016/j.biopha.2014.11.012. Published online EpubFeb

  40. Scaranti M, Cojocaru E, Banerjee S, Banerji U (2020) Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 17:349–359. https://doi.org/10.1038/s41571-020-0339-5. Published online EpubJun

  41. Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L (2022) Role of pyroptosis in inflammation and cancer. Cellular & molecular immunology 19:971–992. https://doi.org/10.1038/s41423-022-00905-x. Published online EpubSep

  42. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nature reviews. Immunology 13:397–411. https://doi.org/10.1038/nri3452. Published online EpubJun

  43. Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E (2022) How location and cellular signaling combine to activate the NLRP3 inflammasome. Cellular & molecular immunology 19:1201–1214. https://doi.org/10.1038/s41423-022-00922-w. Published online EpubNov

  44. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579:415–420. https://doi.org/10.1038/s41586-020-2071-9. Published online EpubMar

  45. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103. https://doi.org/10.1038/nature22393. Published online EpubJul 6

  46. Wang QY, Wang YP, Ding JJ, Wang CH, Zhou XH, Gao WQ, Huang HW, Shao F, Liu ZB (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:421. https://doi.org/10.1038/s41586-020-2079-1. Published online EpubMar

  47. Mikawa K, Akamatsu H, Nishina K, Shiga M, Obara H, Niwa Y (2001) Inhibitory Effects of Pentobarbital and Phenobarbital on Human Neutrophil Functions. J Intensive Care Med 16:79–87. https://doi.org/10.1177/088506660101600203

    Article  Google Scholar 

  48. Siwowska K, Schmid RM, Cohrs S, Schibli R, Muller C (2017) Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals 10. https://doi.org/10.3390/ph10030072. Published online EpubAug 15

  49. Xia L, Gu W, Zhang M, Chang YN, Chen K, Bai X, Yu L, Li J, Li S, Xing G (2016) Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Particle and Fibre Toxicology 13:63. https://doi.org/10.1186/s12989-016-0173-1. Published online EpubNov 29

  50. Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T (2010) Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 285:667–674. https://doi.org/10.1074/jbc.M109.053058. Published online EpubJan 1

  51. Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A (2021) Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 338:224–243. https://doi.org/10.1016/j.jconrel.2021.08.027. Published online EpubOct 10

  52. Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C, Song G, Li S, Cong J, Li T et al (2022) Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int J Biol Sci 18:717–730. https://doi.org/10.7150/ijbs.64350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang M, Qi L, Li L, Li Y (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 6:112. https://doi.org/10.1038/s41420-020-00349-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian W, Wang Z, Tang NN, Li JT, Liu Y, Chu Wf, Yang BF (2020) Ascorbic Acid Sensitizes Colorectal Carcinoma to the Cytotoxicity of Arsenic Trioxide via Promoting Reactive Oxygen Species-Dependent Apoptosis and Pyroptosis. Front Pharmacol 11. Published online EpubFeb 21

  55. Wang JL, Zhan LH, Cai Z, Liu XM, Wang JS, Zhong HR, Huang XW, Lai QX, Tan QZ, Xiu YB et al (2020) Arsenic trioxide induces gasdermin E mediated pyroptosis in astroglioma cells. Transl Cancer Res 9:1926–1930. https://doi.org/10.21037/tcr.2020.02.17. Published online EpubMar

  56. Yang D, Liang Y, Zhao S, Ding Y, Zhuang Q, Shi Q, Ai T, Wu SQ, Han J (2020) ZBP1 mediates interferon-induced necroptosis. Cellular & molecular immunology 17:356–368. https://doi.org/10.1038/s41423-019-0237-x. Published online EpubApr

  57. Wang J, Yang D, Shen X, Wang J, Liu X, Lin J, Zhong J, Zhao Y, Qi Z (2020) BPTES inhibits anthrax lethal toxin-induced inflammatory response. Int Immunopharmacol 85:106664. https://doi.org/10.1016/j.intimp.2020.106664. Published online EpubAug

  58. Deng B, Yang D, Wu H, Wang L, Wu R, Zhu H, Huang A, Song J, Cai T, Liu S et al (2022) Ketamine inhibits TNF-alpha-induced cecal damage by enhancing RIP1 ubiquitination to attenuate lethal SIRS. Cell Death Discovery 8:72. https://doi.org/10.1038/s41420-022-00869-x. Published online EpubFeb 19

  59. Wang J, Peng X, Yang D, Guo M, Xu X, Yin F, Wang Y, Huang J, Zhan L, Qi Z (2022) Bcl-2 hijacks the arsenic trioxide resistance in SH-SaY5Y cells. J Cell Mol Med 26:563–569. https://doi.org/10.1111/jcmm.17128. Published online EpubJan

Download references

Acknowledgements

We thank the support of the animal facility and high-resolution core from Xiamen University.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81971505), Xiamen Medical and Health Guiding Project (3502720224ZD1222), Xiamen City Health Guidance Project (3502Z20224ZD1222), Xiamen Science and Technology Plan Project (3502Z20224026), and Xiamen City Health Guidance Project (3502Z20224ZD1225).

Author information

Authors and Affiliations

Authors

Contributions

F. Y and X. X performed most of the experiments with the help of other authors. D. Y, X. Z and J. W designed and instructed this study. X. Z and J. W acquired the grants support for this project. D. Y, F. Y and X. X drafted this manuscript, D. Y edited and refined this manuscript. D. Y supervised the manuscript preparation and submission. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Daowei Yang, Xuan Zhu or Jinling Wang.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Animal experiments were conducted with the permission of the Xiamen University animal committee. Ethics approval and consent to participate involving human material are not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, F., Xu, X., Qi, J. et al. DSPE-PEG2000-methotrexate nanoparticles encapsulating phenobarbital sodium kill cancer cells by inducing pyroptosis. J Mol Med 102, 213–229 (2024). https://doi.org/10.1007/s00109-023-02403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02403-7

Keywords

Navigation