Skip to main content
Log in

Dynamics of the generalized penny-model on the rotating plane

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider a nonholonomic generalized penny-model on the rotating plane. The generalized penny-model is the model of an inhomogeneous balanced sphere rolling without slipping and articulated with a weightless sliding support that prevents the rotating of the sphere in a certain direction. The sliding of the support along the rotating plane is ideal. The equations of motion, based on the D’Alembert-Lagrange principle, are constructed. At fixed levels of the first integrals, we reduce the original system of equations of motion to an autonomous system of four differential equations admitting the integral of energy. In the case of dynamic symmetry, the reduced system is linear. Its solution can be obtained analytically. In the dynamically nonsymmetric model, we investigate the reduced problem using a two-dimensional or three-dimensional Poincaré map preserving the phase volume (we have the standard invariant measure). There are chaotic modes in the system. The results are illustrated graphically.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No data associated in the manuscript.]

References

  1. A.M. Bloch, Nonholonomic Mechanics and Control (Springer, New-York, 2015)

    Book  Google Scholar 

  2. E.A. Mikishanina, Dynamics of the Chaplygin sphere with additional constraint. Commun. Nonlinear Sci. Numer. Simul. 117, 106920 (2023). https://doi.org/10.1016/j.cnsns.2022.106920

    Article  MathSciNet  Google Scholar 

  3. A.V. Borisov, I.S. Mamaev, A.A. Kilin, I.A. Bizyaev, Selected Problems of Nonholonomic Mechanics. Moscow-Izhevsk: Institute of Computer Research (Institute of Computer Research, Moscow-Izhevsk, 2016)

    Google Scholar 

  4. A.V. Borisov, E.A. Mikishanina, Two nonholonomic chaotic systems. Part I. On the suslov problem. Regul. Chaotic Dyn. 25(3), 313–322 (2020). https://doi.org/10.1134/S1560354720030065

    Article  ADS  MathSciNet  Google Scholar 

  5. S.A. Chaplygin, About rolling a ball on a horizontal plane. Matem. Sbor. 24, 139–168 (1903)

    Google Scholar 

  6. N.K. Moshchuk, On the Chaplygin ball motion on a horizontal plane. Prikl. Mat. Mekh 47(6), 916–921 (1983)

    Google Scholar 

  7. I.A. Bizyaev, I.S. Mamaev, Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere. Int. J. Non-Linear Mech. 126(12), 103550 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103550

    Article  ADS  Google Scholar 

  8. A.V. Borisov, E.A. Mikishanina, Dynamics of the Chaplygin ball with variable parameters. Rus. J. Nonlin. Dyn. 16(3), 453–462 (2020). https://doi.org/10.20537/nd200304

    Article  MathSciNet  Google Scholar 

  9. A.V. Borisov, I.S. Mamaev, Chaplygin’s ball rolling problem is hamiltonian. Math. Notes 70(5), 720–723 (2001). https://doi.org/10.1023/A:1012995330780

    Article  MathSciNet  Google Scholar 

  10. B. Jovanovic, Hamiltonization and integrability of the Chaplygin sphere in RN. J. Nonlinear Sci. 20(5), 569–593 (2010). https://doi.org/10.1007/s00332-010-9067-9

    Article  ADS  MathSciNet  Google Scholar 

  11. A.A. Kilin, The dynamics of chaplygin ball: the qualitative and computer analysis. Regul. Chaotic Dyn. 6(3), 291–306 (2001). https://doi.org/10.1070/RD2001v006n03ABEH000178

    Article  ADS  MathSciNet  Google Scholar 

  12. Duistermaat, J.J.: Chaplygin’s sphere. Preprint at (2004). arXiv:math/0409019v1

  13. I.A. Bizyaev, A.V. Borisov, I.S. Mamaev, Dynamics of the Chaplygin ball on a rotating plane. Russ. J. Math. Phys. 25(4), 423–433 (2018). https://doi.org/10.1134/S1061920818040027

    Article  MathSciNet  Google Scholar 

  14. A.V. Borisov, I.S. Mamaev, Symmetries and reduction in nonholonomic mechanics. Regul. Chaotic Dyn. 20(5), 553–604 (2015). https://doi.org/10.1134/S1560354715050044

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Fassó, L.C. García-Naranjo, N. Sansonetto, Moving energies as first integrals of nonholonomic systems with affine constraints. Nonlinearity 31(3), 755–782 (2018). https://doi.org/10.1088/1361-6544/aa9837

    Article  ADS  MathSciNet  Google Scholar 

  16. V.V. Kozlov, On the theory of integration of equations of nonholonomic mechanics. Uspekhi Mekhaniki 8(3), 85–107 (1985)

    MathSciNet  Google Scholar 

  17. A.V. Borisov, A.O. Kazakov, I.R. Sataev, The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top. Regul. Chaotic Dyn. 19(6), 718–733 (2014). https://doi.org/10.1134/S1560354714060094

    Article  ADS  MathSciNet  Google Scholar 

  18. A.V. Borisov, I.S. Mamaev, An inhomogeneous Chaplygin sleigh. Regul. Chaotic Dyn. 22(4), 435–447 (2017). https://doi.org/10.1134/S1560354717040062

    Article  ADS  MathSciNet  Google Scholar 

  19. Y.N. Fedorov, A.J. Maciejewski, M. Przybylska, Suslov problem: integrability, meromorphic and hypergeometric solutions. Nonlinearity 22(9), 2231–2259 (2009). https://doi.org/10.1088/0951-7715/22/9/009

    Article  ADS  MathSciNet  Google Scholar 

  20. A.S. Gonchenko, E.A. Samylina, On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a celtic stone. Radiophys. Quantum Electron. 62(5), 369–384 (2019). https://doi.org/10.1007/s11141-019-09984-9

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Project no. 19-71-30012) https://rscf.ru/en/project/19-71-30012/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya A. Mikishanina.

Ethics declarations

Conflict of interest

The author declares that she has no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikishanina, E.A. Dynamics of the generalized penny-model on the rotating plane. Eur. Phys. J. B 96, 157 (2023). https://doi.org/10.1140/epjb/s10051-023-00615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00615-x

Navigation