Skip to main content
Log in

Determination and speciation of arsenic in drinking water samples by X-ray spectrometry technique

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKβ2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 μg/L and 0.89 μg/L, respectively. For speciation, these limits were calculated to be 50 μg/L and 200 μg/L, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, AKM, upon reasonable request.

References

  1. K.A. James, J.R. Meliker, J.O. Nriagu, Arsenic, International Encyclopedia of Public Health, 2nd edn. (Academic Press, Cambridge, 2016), pp.170–175

    Google Scholar 

  2. A. Shah, A. Arjunan, A. Baroutaji, J. Zakharova, Water Sci. Eng. (2023). https://doi.org/10.1016/j.wse.2023.04.003

    Article  Google Scholar 

  3. R.N. Ratnaike, Postgrad. Med. J. (2003). https://doi.org/10.1136/pmj.79.933.391

    Article  PubMed  PubMed Central  Google Scholar 

  4. Y. Wang, K. Pi, S. Fendorf, Y. Deng, X. Xie, Earth-Sci. Rev. (2019). https://doi.org/10.1016/j.earscirev.2017.10.007

    Article  Google Scholar 

  5. H. Guo, D. Wen, Z. Liu, Y. Jia, Q. Guo, Appl. Geochem. (2014). https://doi.org/10.1016/j.apgeochem.2013.12.016

    Article  Google Scholar 

  6. H.A. Michael, Science (2013). https://doi.org/10.1126/science.1242212

    Article  PubMed  PubMed Central  Google Scholar 

  7. C.W. Neil, Y.J. Yang, D. Schupp, Y.S. Jun, Environ. Sci. Technol. (2014). https://doi.org/10.1021/es405119q

    Article  PubMed  Google Scholar 

  8. S.J. Appleyard, J. Angeloni, R. Watkins, Appl. Geochem. (2006). https://doi.org/10.1016/j.apgeochem.2005.09.008

    Article  Google Scholar 

  9. Biswas, J. P. Gustafsson, H. Neidhardt, D. Halder, A. K. Kundu, D. Chatterjee, Z. Berner, P. Bhattacharya, Water Res. (2014) https://doi.org/10.1016/j.ejrh.2015.03.002

  10. M. Kanematsu, T.M. Young, K. Fukushi, P.G. Green, J.L. Darby, Geochim. Cosmochim. Acta (2013). https://doi.org/10.1016/j.gca.2012.09.055

    Article  Google Scholar 

  11. J.M. Azcue, J.O. Nriagu, J. Geochem. Explor. (1995). https://doi.org/10.1016/0375-6742(94)00032-7

    Article  Google Scholar 

  12. Y. Nakajima, Y. Endo, Y. Inoue, K. Yamanaka, Appl. Organomet. Chem. (2006). https://doi.org/10.1002/aoc.1085

    Article  Google Scholar 

  13. W.R. Cullen, K.J. Reimer, Chem. Rev. (1989). https://doi.org/10.1021/cr00094a002

    Article  Google Scholar 

  14. C.K. Jain, I. Ali, Water Res. (2000). https://doi.org/10.1016/S0043-1354(00)00182-2

    Article  Google Scholar 

  15. M. Tolins, M. Ruchirawat, P. Landrigan, Ann. Glob. Health (2014). https://doi.org/10.1016/j.aogh.2014.09.005

    Article  PubMed  Google Scholar 

  16. C. Ali, Rev. (2012). https://doi.org/10.1021/cr300133d

    Article  Google Scholar 

  17. E.J. Martinez-Finley, L.G. Costa, Y. Finkelstein, M. Aschner, Arsenic, 2nd edn. (Academic Press, Cambridge, 2014), pp.272–274

    Google Scholar 

  18. V. A.T. Reis A. C. Duarte, TrAC, Trends Anal. Chem. (2018) https://doi.org/10.1016/j.trac.2019.115770

  19. N.M. Zarić, S. Braeuer, W. Goessler, J. Hazard. Mater. (2022). https://doi.org/10.1016/j.jhazmat.2022.128614

    Article  PubMed  Google Scholar 

  20. P.M. Leal, J.C.G. Mesa, I.M. Benítez, A.G. de Torres, E.V. Alonso, Talanta (2021). https://doi.org/10.1016/j.talanta.2021.122769

    Article  PubMed  Google Scholar 

  21. M.S. Reid, K.S. Hoy, J.R.M. Schofield, J.S. Uppal, Y. Lin, X. Lu, H. Peng, X.C. Le, TrAC, Trends Anal. Chem. (2020). https://doi.org/10.1016/j.trac.2019.115770

    Article  Google Scholar 

  22. H. Yu, C. Li, Y. Tian, X. Jiang, Microchem. J. (2020). https://doi.org/10.1016/j.microc.2019.104312

    Article  Google Scholar 

  23. A.G. Howard, J. Anal. At. Spectrom. (1997). https://doi.org/10.1039/A605050F

    Article  Google Scholar 

  24. X. Zhang, R. Cornelis, J. De Kimpe, L. Mees, Anal. Chim. Acta (1996). https://doi.org/10.1016/0003-2670(95)00449-1

    Article  Google Scholar 

  25. M.A.L. Gonzálvez, M.M. Gómez, C. Cámara, M.A. Palacios, J. Anal. At. Spectrom. (1994). https://doi.org/10.1039/JA9940900291

    Article  Google Scholar 

  26. X.C. Le, M. Ma, Anal. Chem. (1998). https://doi.org/10.1021/ac971247q

    Article  PubMed  Google Scholar 

  27. K.J. Lamble, S.J. Hill, Anal. Chim. Acta (1996). https://doi.org/10.1016/S0003-2670(96)00348-0

    Article  Google Scholar 

  28. G. Rauret, R. Rubio and A. Padro, F. J. Anal. Chem. (1991) https://doi.org/10.1007/BF00324472

  29. K.W.M. Siu, G. Guevremont, J.C.Y. le Blanc, G.J. Garnder, S.S. Berman, J. Chromatogr. A (1991). https://doi.org/10.1016/S0021-9673(01)88434-X

    Article  Google Scholar 

  30. J.J. Corr, E.H. Larsen, J. Anal. At. Spectrom. (1996). https://doi.org/10.1039/JA9961101215

    Article  Google Scholar 

  31. S.A. Pergantis, W. Winnik, D. Betowski, J. Anal. At. Spectrom. (1997). https://doi.org/10.1039/A606416G

    Article  Google Scholar 

  32. S.A. Pergantis, S. Wangkarn, K.A. Francesconi, J.E. Thomas-Oates, Anal. Chem. (2000). https://doi.org/10.1021/ac9906072

    Article  PubMed  Google Scholar 

  33. S.N. Pedersen, K.A. Francesconi, Rapid Commun. Mass Spectrom. (2000). https://doi.org/10.1002/(SICI)1097-0231(20000430)14:8%3C641::AID-RCM923%3E3.0.CO;2-V

    Article  PubMed  Google Scholar 

  34. D. Madsen, W. Goessler, S.N. Pedersen, K.A. Francesconi, J. Anal. At. Spectrom. (2000). https://doi.org/10.1039/B001418O

    Article  Google Scholar 

  35. J. A. Plant, J. Bone, N. Voulvoulis, DG. Kinniburgh, PL. Smedley, FM. Fordyce, B. Klinck, Treatise on Geochemistry 2nd edn. (Elsevier, 2014)1 pp. 3–57.

  36. G.E.M. Hall, J.C. Pelchat, G. Gauthier, J. Anal. At. Spectrom. (1999). https://doi.org/10.1039/A807498D

    Article  Google Scholar 

  37. P. Montoro Leal, E. Vereda Alonso, M.M. López Guerrero, M.T. Siles Cordero, J.M. Cano Pavón, A. García de Torres, Talanta (2018) https://doi.org/10.1016/j.talanta.2018.03.019

  38. J.A. Baig, T.G. Kazi, A.Q. Shah, M.B. Arain, H.I. Afridi, G.A. Kandhro, S. Khan, Anal. Chim. Acta (2009). https://doi.org/10.1016/j.aca.2009.07.065

    Article  PubMed  Google Scholar 

  39. V.G. Mihucz, L. Bencs, K. Koncz, E. Tatár, T. Weiszburg, G. Záray, Spectrochim. Acta, Part B (2017). https://doi.org/10.1016/j.sab.2016.12.010

    Article  Google Scholar 

  40. Elik, M. Tuzen, B. Hazer, S. Kaya, K. P. Katin, Nail Altunay, Sci Rep. (2021) https://doi.org/10.1038/s41598-021-84819-0

  41. K. Hagiwara, T. Inui, Y. Koike, M. Aizawa, T. Nakamura, Talanta (2015). https://doi.org/10.1016/j.talanta.2014.12.027

    Article  PubMed  Google Scholar 

  42. L. Foster, G.E. Brown Jr., T.N. Tingle, G.A. Parks, Am. Mineral. (1998). https://doi.org/10.2138/am-1998-5-616

    Article  Google Scholar 

  43. L. Foster, G.E. Brown Jr., G.A. Parks, Geochim. Cosmochim. Acta (2003). https://doi.org/10.1016/S0016-7037(02)01301-7

    Article  Google Scholar 

  44. K. Hagiwara, Y. Koike, M. Aizawa, T. Nakamura, Anal. Sci. (2018). https://doi.org/10.2116/analsci.18P217

    Article  PubMed  Google Scholar 

  45. P.R. Aranda, I. Llorens, E. Perino, I.D. Vito, J. Raba, Environ. Nanotechnol. Monit. Manage. (2016). https://doi.org/10.1016/j.enmm.2015.11.002

    Article  Google Scholar 

  46. R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, I. Queralt, Anal. Chem. (2015). https://doi.org/10.1021/acs.analchem.5b00283

    Article  PubMed  Google Scholar 

  47. F. Aslan, A. Tor, Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.135661

    Article  PubMed  Google Scholar 

  48. B.L. Geoghegan, Y. Liu, S. Peredkov, S. Dechert, F. Meyer, S. DeBeer, G.E. Cutsail, J. Am. Chem. Soc. (2022). https://doi.org/10.1021/jacs.1c09505

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Hennings, A. Pleßow, X-Ray Spectrom. (2018). https://doi.org/10.1002/xrs.2823

    Article  Google Scholar 

  50. D.V. Babos, V.C. Costa, E.R.P. Filho, Microchem. J. (2019). https://doi.org/10.1016/j.microc.2019.03.077

    Article  Google Scholar 

  51. Klines, J. Malherbe, F. Claverie, Anal. Chim. Acta (2013)https://doi.org/10.1016/j.aca.2013.02.035

  52. J.M. Arber, D.S. Urch, N.G. West, Analyst (1988). https://doi.org/10.1039/AN9881300779

    Article  PubMed  Google Scholar 

  53. G. Peng, F.M.F. Degroot, K. Hämäläinen, J.A. Moore, X. Wang, M.M. Grush, J.B. Hastings, D.P. Siddons, W.H. Armstrong, J. Am. Chem. Soc. (1994). https://doi.org/10.1021/ja00086a024

    Article  Google Scholar 

  54. S. Urch, P.R. Wood, X-Ray Spectrom. (1978). https://doi.org/10.1002/xrs.1300070105

    Article  Google Scholar 

  55. K. Sakurai, H. Eba, Nucl. Instrum. Methods Phys. Res. Sect. B (2003). https://doi.org/10.1016/S0168-583X(02)01414-3

    Article  Google Scholar 

  56. P. Glatzel, U. Bergmann, Coord. Chem. Rev. (2005). https://doi.org/10.1016/j.ccr.2004.04.011

    Article  Google Scholar 

  57. J. Kawai, C. Suzuki, H. Adachi, T. Konishi, Y. Gohshi, Phys. Rev. B (1994). https://doi.org/10.1103/PhysRevB.50.11347

    Article  Google Scholar 

  58. X. Li, C. Zhang, R.R. Almeev, X.C. Zhang, X.F. Zhao, L.X. Wang, J. Koepke, F. Holtz, Chem. Geol. (2019). https://doi.org/10.1016/j.chemgeo.2019.01.009

    Article  Google Scholar 

  59. S.P. Raeburn, E.S. Ilton, D.R. Veblen, Geochim. Cosmochim. Acta (1997). https://doi.org/10.1016/S0016-7037(97)00263-9

    Article  Google Scholar 

  60. S. Bajt, S.R. Sutton, J.S. Delaney, Geochim. Cosmochim. Acta (1994). https://doi.org/10.1016/0016-7037(94)90305-0

    Article  Google Scholar 

  61. V. M. Chubarov, A. L. Finkel’shtein, J Anal Chem. (2010) https://doi.org/10.1134/S1061934810060122

  62. M.L. Chen, L.Y. Ma, X.W. Chen, Talanta (2014). https://doi.org/10.1016/j.talanta.2014.02.037

    Article  PubMed  Google Scholar 

  63. T.F. Lin, J.K. Wu, Wat. Res. (2001). https://doi.org/10.1016/S0043-1354(00)00467-X

    Article  ADS  Google Scholar 

  64. P.J. Potts, X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry. In: A Handbook of Silicate Rock Analysis. (Springer, Dordrecht. 1987) pp. 226–285.

  65. Peter Brouwer, Theory of XRF, 3rd edn (PANalytical B.V. 2010) p. 16

  66. S. Ghosh, A.K. Maurya, P.D. Barman, A. Roy, M. Madaan, U.R. Choudhury, Anal. Sci. (2023). https://doi.org/10.1007/s44211-023-00367-9

    Article  PubMed  Google Scholar 

  67. N. Kadachi, M.A. Al-Eshaikh, X-Ray Spectrom. (2012). https://doi.org/10.1002/xrs.2412

    Article  Google Scholar 

  68. ISO/IEC Guide 98-3:2008 Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) https://www.iso.org/standard/50461.html. Accessed 17 Oct 2023

  69. Guidelines for Standard Method Performance Requirements AOAC Official Methods of Analysis (2016) https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf. Accessed 17 Oct 2023

  70. Student, Biometrika (1908) https://doi.org/10.2307/2331554

Download references

Acknowledgements

The authors acknowledge the constant support and valuable input of Dr. Utpal Roy Choudhury, GSIER, Kolkata-700091. The authors are also grateful to Dr. Rupankar Paira from the Department of Chemistry, MMCC, Kolkata-700003, India, for his valuable discussions and support during the work on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Maurya.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or non-financial conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, P.D., Maurya, A.K., Madaan, M. et al. Determination and speciation of arsenic in drinking water samples by X-ray spectrometry technique. ANAL. SCI. 40, 309–317 (2024). https://doi.org/10.1007/s44211-023-00461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00461-y

Keywords

Navigation