Skip to main content
Log in

Spatial distribution of charcoal in topsoil and its potential determinants on the Tibetan Plateau

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

As an important proxy for investigating past fire activities, charcoal is often used to explore the characteristics of fire distribution and its relationships with vegetation, climate, and human activities. Research into the spatial distribution and environmental determinants for charcoal, however, is still limited. In this study, we identified and counted charcoal from topsoil samples covering the Tibetan Plateau using the pollen methodology, and investigated its relationships with vegetation net primary production (NPP), elevation, climate (precipitation, mean temperature of the coldest month and warmest month) and human population by boosted regression trees (BRT). Results reveal that the concentration of microscopic charcoal, macroscopic charcoal, and total charcoal all increase from south-west to north-east, which is consistent with the trend that the population density on the Tibetan Plateau is high in the east and low in the west, suggesting that an increase in human activity is likely to promote the occurrence of fire. The BRT modeling reveals that NPP, elevation, and mean temperature of the coldest month are important factors for total charcoal concentration on the Tibetan Plateau, and the frequency and intensity of fires further increase with increasing vegetation biomass, decreasing elevation, and decreasing mean temperature of the coldest month. The spatial variation characteristics of charcoal from topsoil on the Tibetan Plateau not only reflect well the spatial fire situation in the region, but also have a good indicative significance for vegetation, climate, and human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andela N, Morton D C, Giglio L, Chen Y, van der Werf G R, Kasibhatla P S, DeFries R S, Collatz G J, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton J R, Yue C, Randerson J T (2017). A human-driven decline in global burned area. Science, 356(6345): 1356–1362

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bowman D M J S, Kolden C A, Abatzoglou J T, Johnston F H, van der Werf G R, Flannigan M (2020). Vegetation fires in the Anthropocene. Nat Rev Earth Environ, 1(10): 500–515

    ADS  Google Scholar 

  • Cao X Y, Tian F, Li K, Ni J, Yu X S, Liu L N, Wang N N (2021). Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions. Earth Syst Sci Data, 13(7): 3525–3537

    ADS  Google Scholar 

  • Clark J S (1988). Particle motion and the theory of charcoal analysis: source area, transport, deposition and sampling. Quat Res, 30(1): 67–80

    ADS  Google Scholar 

  • Clark J S, Lynch J, Stocks B J, Goldammer J G (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene, 8(1): 19–29

    ADS  Google Scholar 

  • Clark R L (1982). Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen Spores, 24: 523–535

    Google Scholar 

  • Daniau A L, Harrison S P, Bartlein P J (2010). Fire regimes during the last glacial. Quat Sci Rev, 29(21–22): 2918–2930

    ADS  Google Scholar 

  • Dong G H, Jia X, An C B, Chen F H, Zhao Y, Tao S C, Ma M M (2012). Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China. Quat Res, 77(1): 23–30

    Google Scholar 

  • Dong G H, Jia X, Elston R, Chen F H, Li S C, Wang L, Cai L H, An C B (2013). Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J Archaeol Sci, 40(5): 2538–2546

    Google Scholar 

  • Froyd C A (2006). Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records. Holocene, 16(2): 235–249

    ADS  Google Scholar 

  • Glückler R, Herzschuh U, Kruse S, Andreev A, Vyse S A, Winkler B, Biskaborn B K, Pestryakova L, Dietze E (2021). Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record. Biogeosciences, 18(13): 4185–4209

    ADS  Google Scholar 

  • Guo X L, Zhao W W, Sun J H, Li F R, Zhang K, Zhao Y (2011). Advances of charcoal study for paleoenvironment in China. J Glaciol Geocryol, 33(02): 342–348 (in Chinese)

    Google Scholar 

  • Hayashi R, Takahara H, Hayashida A, Takemura K (2010). Millennial-scale vegetation changes during the last 40,000 yr based on a pollen record from Lake Biwa, Japan. Quat Res, 74(1): 91–99

    Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data, 7(1): 25

    PubMed  PubMed Central  Google Scholar 

  • Hijmans R J, Phillips S, Leathwick J, Elith J (2015). Dismo: Species Distribution Modeling, version 1.0–12. Available at CRAN website

  • Jiang L, Yu S, Wu L T Y, Du W L (2018). Summary of grassland fire research. Acta Agrestia Sin, 26(04): 791–803 (in Chinese)

    CAS  ADS  Google Scholar 

  • Jin S M, Hou G L, Xu C J, Wen D Z M, Gao J Y (2022). Extreme environmental risk assessment of human activities on the Qinghai-Tibet Plateau. Resources and Environment in the Yangtze Basin, 31(09): 2048–2059 (in Chinese)

    Google Scholar 

  • Kaiser K, Lai Z P, Schneider B, Schoch W H, Shen X H, Miehe G, Bruckner H (2009). Sediment sequences and paleosols in the Kyichu Valley, southern Tibet (China), indicating Late Quaternary environmental changes. Isl Arc, 18(3): 404–427

    Google Scholar 

  • Li J Y, Wang N L (2020). Holocene grassland fire dynamics and forcing factors in continental interior of China. Geophys Res Lett, 47(13): e2020GL088049

    ADS  Google Scholar 

  • Li S F, Hughes A C, Su T, Anberree J L, Oskolski A A, Sun M, Ferguson D K, Zhou Z K (2017). Fire dynamics under monsoonal climate in Yunnan, SW China: past, present and future. Palaeogeogr Palaeoclimatol Palaeoecol, 465: 168–176

    Google Scholar 

  • Li S, Chen J, Liu C, Wang Y (2021b). Mineral prospectivity prediction via convolutional neural networks based on geological big data. J Earth Sci, 32(2): 327–347

    Google Scholar 

  • Li W J, Li P, Feng Z M, You Z, Xiao C W (2021a). Spatial definition of “Unpopulated Areas (UPAs)” based on the characteristics of human settlements in the Qinghai-Tibet Plateau, China. Acta Geogr Sin, 76(09): 2118–2129

    Google Scholar 

  • Li X Q, Zhou X Y, Shang X, Dodson J (2006). Different-(kPa/°C) size method of charcoal analysis in loess and its significance in the study of fire variation. J Lake Sci, 18(5): 540–544

    Google Scholar 

  • Li Y Y, Hou S F, Zhao P F (2010). Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities. Quat Sci, 30(02): 356–363 (in Chinese)

    Google Scholar 

  • Li Z, Saito Y, Dang P X, Matsumoto E, Vu Q L (2009). Warfare rather than agriculture as a critical influence on fires in the late Holocene, inferred from northern Vietnam. Proc Natl Acad Sci USA, 106(28): 11490–11495

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu L N, Wang W, Chen D X, Niu Z M, Wang Y, Cao X Y, Ma Y Z (2020). Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China. Palaeogeogr Palaeoclimatol Palaeoecol, 543: 109600

    Google Scholar 

  • Ma X Y, Wu D, Liang Y, Yuan Z J, Wang T, Li Y M, Gyatso N N (2023). Changes in regional religious activities in the last millennium recorded by black carbon in Lake Dalzong, northeastern Tibetan Plateau. Sci China Earth Sci, 66(2): 303–315

    ADS  Google Scholar 

  • Ma Y L, Ma W M, Wang C, Fu S Y, Ma M X (2020). Study on the occurrence and prevention and control of forest fires in the Marco River Forest region of Qinghai Province. Sci and Techn Qinghai Agri Forest, (01): 37–41 (in Chinese)

  • Marlon J R, Bartlein P J, Carcaillet C, Gavin D G, Harrison S P, Higuera P E, Joos F, Power M J, Prentice I C (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geosci, 1: 697–702

    CAS  ADS  Google Scholar 

  • Marlon J R, Bartlein P J, Daniau A L, Harrison S P, Maezumi S Y, Power M J, Tinner W, Vannière B (2013). Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat Sci Rev, 65: 5–25

    ADS  Google Scholar 

  • Marlon J R, Kelly R, Daniau A L, Vanniere B, Power M J, Bartlein P, Higuera P, Blarquez O, Brewer S, Brucher T, Feurdean A, Romera G G, Iglesias V, Maezumi S Y, Magi B, Courtney Mustaphi C J, Zhihai T (2016). Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences, 13(11): 3225–3244

    ADS  Google Scholar 

  • Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L (2012). What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: a review. Earth Sci Rev, 112(3–4): 155–172

    ADS  Google Scholar 

  • Miao Y F, Wu F L, Warny S, Fang X M, Lu H J, Fu B H, Song C H, Yan X L, Escarguel G, Yang Y B, Meng Q Q, Shi P L (2019). Miocene fire intensification linked to continuous aridification on the Tibetan Plateau. Geology, 47(4): 303–307

    CAS  ADS  Google Scholar 

  • Miao Y F, Zhang D J, Cai X M, Li F, Jin H L, Wang Y P, Liu B (2017). Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity. Quat Int, 443: 124–131

    Google Scholar 

  • Moritz M A, Parisien M A, Batllori E, Krawchuk M A, Van Dorn J, Ganz D J, Hayhoe K (2012). Climate change and disruptions to global fire activity. Ecosphere, 3(6): 49

    Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2021). “Fields: Tools for spatial data.” R package version 14.1 Patterson W A III, Edwards K J, Maguire D J (1987). Microscopic charcoal as a fossil indicator of fire. Quat Sci Rev, 6(1): 3–23

    Google Scholar 

  • Power M J, Marlon J, Ortiz N, Bartlein P J, Harrison S P, Mayle F E, Ballouche A, Bradshaw R H W, Carcaillet C, Cordova C, Mooney S, Moreno P I, Prentice I C, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali A A, Anderson R S, Beer R, Behling H, Briles C, Brown K J, Brunelle A, Bush M, Camill P, Chu G Q, Clark J, Colombaroli D, Connor S, Daniau A L, Daniels M, Dodson J, Doughty E, Edwards M E, Finsinger W, Foster D, Frechette J, Gaillard M J, Gavin D G, Gobet E, Haberle S, Hallett D J, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong Z C, Larsen C, Long C J, Lynch J, Lynch E A, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson D M, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard P J H, Rowe C, Sanchez Goñi M F, Shuman B N, Takahara H, Toney J, Turney C, Urrego-Sanchez D H, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang J H (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn, 30(7–8): 887–907

    Google Scholar 

  • Qi W, Liu S H, Zhou L (2020). Regional differentiation of population in Tibetan Plateau: insight from the “Hu Line”. Acta Geogr Sin, 75(02): 255–267

    Google Scholar 

  • Qin D, Shen C M, Meng H W, Huang L P (2018). Relationship between modern pollen/charcoal assemblages and vegetation/fire in northeast Yunnan. J Yunnan Normal U (Nat Sci Ed), 38(03): 70–78 (in Chinese)

    Google Scholar 

  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Running S, Zhao M (2019). MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2023-01-28 from

  • Salonen J S, Luoto M, Alenius T, Heikkila M, Seppa H, Telford R J, Birks H J B (2014). Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods. Quat Sci Rev, 88: 69–81

    ADS  Google Scholar 

  • Singer D A (2021). How deep learning networks could be designed to locate mineral deposits. J Earth Sci, 32(2): 288–292

    Google Scholar 

  • Tan Z H, Han Y M, Cao J J, Huang C C, An Z S (2015). Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China. Quat Sci Rev, 109: 76–87

    Google Scholar 

  • Tan Z H, Huang C C, Pang J L, Zhou Y L (2013). Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: evidence from charcoal records. Holocene, 23(10): 1466–1476

    ADS  Google Scholar 

  • Tian F, Cao X Y, Dallmeyer A, Zhao Y, Ni J, Herzschuh U (2017). Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quat Sci Rev, 156: 1–11

    ADS  Google Scholar 

  • Vannière B, Blarquez O, Rius D, Doyen E, Brücher T, Colombaroli D, Connor S, Feurdean A, Hickler T, Kaltenrieder P, Lemmen C, Leys B, Massa C, Olofsson J (2016). 7000-year human legacy of elevation-dependent European fire regimes. Quat Sci Rev, 132: 206–212

    Google Scholar 

  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008). Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’ Accesa (Tuscany, Italy). Quat Sci Rev, 27(11–12): 1181–1196

    ADS  Google Scholar 

  • Wang W, Feng Z D (2013). Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth Sci Rev, 122: 38–57

    ADS  Google Scholar 

  • Wang Z S, Miao Y F, Zhao Y T, Li F, Lei Y, Xiang M X, Zou Y G (2020). Characteristics of microcharcoal in the lake surface sediments in the northern margin of Qaidam Basin of China and its environmental significance. J Desert Res, 40(04): 10–17

    CAS  Google Scholar 

  • Westerling A L, Hidalgo H G, Cayan D R, Swetnam T W (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313(5789): 940–943

    CAS  PubMed  ADS  Google Scholar 

  • Whitlock C, Millspaugh S H (1996). Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park. Holocene, 6(1): 7–15

    ADS  Google Scholar 

  • Wu S H, Yin Y H, Zhen D, Yang Q Y (2005). Climate changes in the Tibetan Plateau during the last three decades. Acta Geogr Sin, 60(1): 3–11

    Google Scholar 

  • Xian B (2005). About the Tibetan energy culture in the vision of ecology. Qinghai J Ethno, 16(03): 42–47 (in Chinese)

    Google Scholar 

  • Xu X, Li Y Y (2015). Comparison of the fire history reconstructions from three different kinds of charcoal data on the same site, Daxing’an Mountain. Quat Sci, 35(4): 960–966 (in Chinese)

    Google Scholar 

  • Yao T D, Chen F H, Cui P, Ma Y M, Xu B Q, Zhu L P, Zhan F, Wang W C, Ai L S, Yang X X (2017). From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull Chinese Academy Sci, 32(09): 924–931 (in Chinese)

    Google Scholar 

  • Ye T, Zhao N, Yang X, Ouyang Z, Liu X, Chen Q, Hu K, Yue W, Qi J, Li Z, Jia P (2019). Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci Total Environ, 658: 936–946

    CAS  PubMed  ADS  Google Scholar 

  • Yuan Z J, Wu D, Wang T, Ma X Y, Li Y M, Shao S, Zhang Y, Zhou A F (2022). Holocene fire history in southwestern China linked to climate change and human activities. Quat Sci Rev, 289: 107615

    Google Scholar 

  • Zhan C L, Cao J J, Han Y M, An Z S (2011). Research progress on reconstruction of paleofire history. Adv Earth Sci, 26(12): 1248–1259

    CAS  Google Scholar 

  • Zhang D, Huang X, Liu Q, Chen X, Feng Z (2022). Holocene fire records and their drivers in the westerlies-dominated Central Asia. Sci Total Environ, 833: 155153

    CAS  PubMed  ADS  Google Scholar 

  • Zhang J, Bao G Y, Zhang J H (2013). Characteristic analysis of grassland fire meteorological factor in Haidong Area of Qinghai. Sci Techn Qinghai Agri Fores, 90(02): 17–20 (in Chinese)

    Google Scholar 

  • Zhao M, Running S W (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943

    CAS  PubMed  ADS  Google Scholar 

  • Zhao Y J, Hou G L, E C Y, Yang L, Wang Q B (2016). Charcoal concentration reflect of environment change and human activities in Xiadawu Relic, Qinghai-Tibet Plateau. J Earth Environ, 7(01): 19–26 (in Chinese)

    Google Scholar 

  • Zhou X W, Wei X, Chen P, Shi T Y, Hui Z C (2022). Charcoal records during the Middle Miocene and its paleoclimatic significance in the Wushan Basin, northeastern Tibetan Plateau. Arid Land Geogr, 45(03): 826–835 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Center for Tibetan Plateau Earth System (BSCTPES, NSFC project No. 41988101). Cathy Jenks provided help with language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Liu or Xianyong Cao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, C., Zhang, Y. et al. Spatial distribution of charcoal in topsoil and its potential determinants on the Tibetan Plateau. Front. Earth Sci. 17, 1059–1069 (2023). https://doi.org/10.1007/s11707-023-1095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-023-1095-5

Keywords

Navigation