Skip to main content
Log in

On the stability of electrostatics stars with modified non-gauge invariant Einstein-Maxwell gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We use a modified Einstein-Maxwell gravity to study stability of an electrostatic spherical star. Correction terms in this model are scalars which are made from contraction of Ricci tensor and electromagnetic vector potential. Our motivation to use this kind of exotic Einstein-Maxwell gravity is inevitable influence of cosmic magnetic field in inflation of the universe which is observed now but its intensity suppresses in the usual gauge invariant Einstein-Maxwell gravity. In this work, we use approach of dynamical systems to obtain stability conditions of such a star and we investigate interaction parts effect of the model on the stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Catton, C., Faber, T., Visser, M.: Gravastars must have anisotropic pressures. Class. Quant. Grav. 22, 4189 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hobson, M.P., Erstathiou, G.P., Lasenby, A.N.: General Relativity An Introduction for Physicists. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Kumar, J., Bharti, P.: ‘An isotropic compact stellar model in curvature coordinate system consistent with observational data‘, arXiv:2102.12754 [astro-ph.GA]

  4. Arbañil, J.D.V., Malheiro, M.: Equilibrium and stability of charged strange quark stars. Phys. Rev. D 92, 084009 (2015). arXiv:1509.07692 [astro-ph.SR]

    Article  ADS  Google Scholar 

  5. Fontanella, D.S., Cabo, A.: ‘A stability analysis of the static EKG Boson Stars’, arXiv:2101.04681 [gr-qc]

  6. Arbail, J.D.V., Malheiro, M.: Equilibrium and stability of charged strange quark stars. Phys. Rev. D 92, 084009 (2015). arXiv:1509.07692 [astro-ph.SR]

    Article  ADS  Google Scholar 

  7. Jimnez, J.C., Fraga, E.S.: Radial oscillations in neutron stars from QCD. Phys. Rev. D 104, 014002 (2021). arXiv:2104.13480 [hep-ph]

    Article  ADS  Google Scholar 

  8. Kain, B.: Fermion-charged-boson stars. Phys. Rev. D 104, 043001 (2021). arXiv:2108.01404 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  9. Wang, W., Feng, Y., Lai, X., Li, Y., Lu, J., Chen, X., Xu, R.: The optical/UV excess of X-ray-dim isolated neutron star II. Nonuniformity of plasma on strangeon star surface. Res. Astron. Astrophys. 18, 082 (2018). arXiv:1705.03763 [astro-ph.HE]

    Article  ADS  Google Scholar 

  10. Wang, W., Lu, J., Tong, H., Ge, M., Li, Z., Men, Y., Xu, R.: The optical/UV excess of X-ray dim isolated neutron star: I. Bremsstrahlung emission from a strangeon star plasma atmosphere. Astrophys. J. 837, 81 (2017). arXiv:1603.08288 [astro-ph.HE]

    Article  ADS  Google Scholar 

  11. Turner, M.S., Widrow, L.M.: Inflation Produced, Large Scale Magnetic Fields. Phys. Rev. D 37, 2743 (1988)

    Article  ADS  Google Scholar 

  12. Ghaffarnejad, H.: Canonical quantization of modified non-gauge invariant Einstein-Maxwell gravity and stability of spherically symmetric electrostatic stars. Phys. Scr. 98, 075018 (2023). arXiv:2306.10285 [gr-qc]

    Article  ADS  Google Scholar 

  13. Ghaffarnejad, H., Naderi, L.: ‘Modified Gauge Invariance Einstein Maxwell Gravity and Stability of Spherical Stars with Magnetic Monopoles’, arXiv:2212.09485 [gr-qc]

  14. Ghaffarnejad, H., Yaraie, E.: ‘Dynamical system approach to scalar-vector-tensor cosmology‘, Gen. Relativ Gravit 49, 49; arXiv:1604.06269 [physics.gen-ph] (2017)

  15. Ghaffarnejad, H., Gholipour, H.: Bianchi I metric solutions with nonminimally coupled Einstein-Maxwell gravity theory. Gen. Relativ. Gravit 53, 1 (2021). arXiv:2003.14216 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghaffarnejad.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

By looking at the Eqs. (2.4) and (2.8) we define

$$\begin{aligned} G_{\mu \nu }=T_{\mu \nu }^{total}=\frac{2\tau _{\mu \nu }}{\alpha A^2} \end{aligned}$$
(8.1)

in which

$$\begin{aligned} \tau _{\mu \nu }=T_{\mu \nu }-\frac{T^{em}_{\mu \nu }}{2}+\Sigma _{\mu \nu } \end{aligned}$$
(8.2)

with

$$\begin{aligned} \Sigma _{\mu \nu }= & {} -\frac{\alpha }{2} A_{\mu }A_{\nu } R+ \frac{\beta }{4} g_{\mu \nu } R_{\kappa \lambda }A^{\kappa }A^{\lambda }-\frac{1}{4}( \nabla _\lambda \nabla _\nu \theta _\mu ^\lambda +\nabla _\lambda \nabla _\mu \theta _\nu ^\lambda )\\{} & {} +\frac{1}{4} g_{\mu \nu } \partial _\kappa \big (\nabla _\lambda \theta ^{\kappa \lambda }\big )+\frac{1}{4} \Box \theta _{\mu \nu }. \end{aligned}$$

By using the Bianchi‘s identity \(\nabla ^{\mu }G_{\mu \nu }=0,\) the Eq. (8.1) gives the following identity for general form of matter stress tensor \(T_{\mu \nu }\) which we considered in this work such that

$$\begin{aligned} \nabla ^\mu T_{\mu \nu }=-\nabla ^\mu \Sigma _{\mu \nu }+\tau _{\mu \nu }\nabla ^\mu \ln A^2 \end{aligned}$$
(8.3)

because \(\nabla ^\mu T_{\mu \nu }^{em}=0.\) In other words, unknown matter stress tensor \(T_{\mu \nu }\) which we considered here should interact with other fields called as gravity and Maxwell fields to support covariant conservation condition for the total stress tensor \(T_{\mu \nu }^{total}\) which we assumed behaves as an anisotropic imperfect fluid with the stress tensor form (2.8).

Appendix II

$$\begin{aligned} \Sigma =&\,8\alpha ^3\beta +4\alpha ^2\beta ^2-4\alpha \beta \nonumber \\&r[(8\alpha ^2-8\alpha ^4-8\alpha ^3\beta +2\alpha ^2\beta ^2+2\alpha \beta ^3)f\nonumber \\&+(2\alpha \beta -8\alpha ^4-8\alpha ^3\beta -2\alpha ^2\beta ^2+V\beta ^2+2\alpha ^2\beta +\alpha \beta ^2+8\alpha ^2)\psi ] \end{aligned}$$
(9.1)
$$\begin{aligned} \Sigma _V=&\,(4\alpha ^3\beta +2\alpha ^2\beta ^2-\alpha \beta )V-4\alpha ^3\beta -2\alpha ^2\beta ^2+\alpha \beta \nonumber \\&r[(16\alpha ^4+16\alpha ^3\beta +4\alpha ^2\beta ^2+4\alpha ^2\beta -16\alpha ^2+2\alpha \beta )\psi \nonumber \\&+(16\alpha ^4+16\alpha ^3\beta +4\alpha ^2\beta ^2-6\alpha ^2 \beta +\alpha \beta ^2-16\alpha ^2+10\alpha \beta -\beta ^2)f] \nonumber \\&r^2[(-4\alpha ^3-2\alpha ^2\beta -4\alpha \beta -2\beta ^2+4\alpha )\psi ^2+(-8\alpha ^4-24\alpha ^3\beta -18\alpha ^2\beta ^2\nonumber \\&-4\alpha \beta ^3-11\alpha ^2\beta - 4\alpha \beta ^2+8\alpha ^2+15\alpha \beta -2\beta ^2)f\psi \nonumber \\&+((8\alpha ^4+8\alpha ^3\beta +2\alpha ^2\beta ^2-8\alpha ^2+\alpha \beta )p_r-\alpha \beta \rho )V\nonumber \\&+(-8\alpha ^4-16\alpha ^3\beta -18\alpha ^2\beta ^2-6\alpha \beta ^3+8\alpha ^2+17\alpha \beta -6\beta ^2)f^2] \end{aligned}$$
(9.2)
$$\begin{aligned} \Sigma _f=&\,\psi [(8\alpha ^4+4\alpha ^3\beta -2\alpha ^2)V+24\alpha ^4+12\alpha ^3\beta -14\alpha ^2]\nonumber \\&+f[(8\alpha ^4-2\alpha ^2\beta ^2-2\alpha ^2+\alpha \beta )V+24\alpha ^4-6\alpha ^2\beta ^2-14\alpha ^2+7\alpha \beta ]\nonumber \\&+r[f^2(-16\alpha ^4-32\alpha ^3\beta -20\alpha ^2\beta ^2-4\alpha \beta ^3 -12\alpha ^3+8\alpha ^2\beta -\alpha \beta ^2\nonumber \\&+28\alpha ^2+8\alpha \beta +\beta ^2 )+\psi f(-16\alpha ^4-24\alpha ^3\beta -8\alpha ^2\beta ^2+4V\alpha \beta -2V\beta ^2\nonumber \\&+4\alpha ^3-2\alpha ^2\beta -2\alpha \beta ^2+40\alpha ^2+8\alpha \beta ) +(16\alpha ^4+8\alpha ^3\beta -8\alpha ^2)Vp_r\nonumber \\&+4V\alpha \beta \psi ^2+(8\alpha ^3+12\alpha ^2+4\alpha )\psi ^2]+r^2[f^3(32\alpha ^4+16\alpha ^3\beta -8\alpha ^2\beta ^2\nonumber \\&-4\alpha \beta ^3-14\alpha ^2-29\alpha \beta +6\beta ^2) +f^2\psi (32\alpha ^4+24\alpha ^3\beta -4\alpha ^2\beta ^2\nonumber \\&-4\alpha \beta ^3-2V\alpha \beta -5V\beta ^2-26\alpha ^3-9\alpha ^2\beta -\alpha \beta ^2-20\alpha ^2-41\alpha \beta +2\beta ^2)\nonumber \\&f\psi ^2(-2V\alpha \beta -4V\beta ^2-18\alpha ^3-18\alpha ^2\beta -6\alpha \beta ^2-14\alpha ^2-12\alpha \beta +2\beta ^2\nonumber \\&-4\alpha )+fV\rho (-2\alpha ^2+\alpha \beta )+fVp_r(-8\alpha ^4+2\alpha ^2\beta ^2+10\alpha ^2-\alpha \beta )] \end{aligned}$$
(9.3)
$$\begin{aligned} \Sigma _\psi =&\,4\alpha ^2\beta (1-V)+r[(8\alpha ^2\beta ^2+20\alpha ^3-26\alpha ^2\beta -9\alpha \beta ) \psi +\psi V(12\alpha ^3+2\alpha ^2\beta \nonumber \\&-2\alpha \beta ^2+\alpha \beta )+2\psi V^3\alpha \beta ^2 +f\psi (24\alpha ^3\beta -4\alpha ^2\beta ^2+20\alpha ^3-54\alpha ^2\beta +2\alpha \beta ^2)\nonumber \\&+fV\psi (12\alpha ^3-2\alpha ^2\beta +2\alpha \beta ^2)]+r^2[(16\alpha ^3-12\alpha ^2\beta )Vp_r +(-24\alpha ^4-8\alpha ^3\beta \nonumber \\&+14\alpha ^2\beta ^2 -2\alpha \beta ^3+24\alpha ^3+4\alpha ^2\beta +26\alpha \beta ^2+2\beta ^3)f^2 +fV\psi (8\alpha ^2\beta +4\alpha \beta ^2)\nonumber \\&+(-24\alpha ^4+20\alpha ^3\beta +10\alpha ^2\beta ^2+4\alpha \beta ^3+48\alpha ^3 +46\alpha ^2\beta +17 \alpha \beta ^2+32\alpha ^2\nonumber \\&-6\alpha \beta +\beta ^2)\psi f+ (8\alpha ^2\beta +4\alpha \beta ^2+2\beta ^2)\psi ^2V+4\alpha ^2\beta \rho V+(-8\alpha ^3\beta -4\alpha ^2\beta ^2\nonumber \\&+24\alpha ^3+28\alpha ^2\beta +10\alpha \beta ^2+24\alpha ^2+2\alpha \beta )\psi ^2]+ r^3[(4\alpha ^2\beta +2\alpha \beta ^2)V^2\psi p_r\nonumber \\&+(12\alpha ^3+6\alpha ^2\beta +8\alpha ^2-\alpha \beta )V\psi p_r+(4\alpha ^3+18\alpha ^2\beta -2\alpha \beta ^2)Vfp_r\nonumber \\&+(-2V\alpha \beta -16\alpha ^3-16\alpha ^2\beta -4\alpha \beta ^2+4\alpha ^2+4\alpha \beta +2\beta ^2-4\alpha )\psi ^3\nonumber \\&+(-36\alpha ^4-30\alpha ^3\beta -6\alpha ^2\beta ^2-28\alpha ^3 -37\alpha ^2\beta -5\alpha \beta ^2+4\beta ^3-8\alpha ^2\nonumber \\&-25\alpha \beta +2\beta ^2)f\psi ^2+ (-4\alpha ^2\beta -10\alpha \beta ^2-4\beta ^3-\beta ^2)Vf\psi ^2\nonumber \\&+(-36\alpha ^4-30\alpha ^3\beta +12\alpha ^2\beta ^2+6\alpha \beta ^3+24\alpha ^3 -76\alpha ^2\beta -58\alpha \beta ^2\nonumber \\&+4\beta ^3-16\alpha ^2-17\alpha \beta +6\beta ^2 )f^2\psi +(-4\alpha ^2\beta -6\alpha \beta ^2-6\beta ^3)f^2\psi V\nonumber \\&+(-4\alpha ^3-2\alpha ^2\beta +\alpha \beta )\rho \psi V+(36\alpha ^3-54\alpha ^2\beta -46\alpha \beta ^2+12\beta ^3)f^3\nonumber \\&+(-4\alpha ^3-2\alpha ^2\beta +2\alpha \beta ^2)\rho Vf] \end{aligned}$$
(9.4)

and

$$\begin{aligned} \Sigma _{p_t}=&\,(16\alpha ^5+16\alpha ^4\beta +4\alpha ^3\beta ^2-4\alpha ^3-2\alpha ^2\beta )V\psi \nonumber \\&+(48\alpha ^5-12\alpha ^3\beta ^2-28\alpha ^3+10\alpha ^2\beta )\psi \nonumber \\ {}&+(16\alpha ^5+20\alpha ^4\beta +6\alpha ^3\beta ^2-4\alpha ^3-3\alpha ^2\beta )Vf\nonumber \\&+ (48\alpha ^5-36\alpha ^4\beta -30\alpha ^3\beta ^2-28\alpha ^3+27\alpha ^2\beta )f\nonumber \\&+r[(64\alpha ^5+64\alpha ^4\beta +16\alpha ^3\beta ^2-24\alpha ^4-14\alpha ^3\beta +3\alpha ^2\beta ^2\nonumber \\&-40\alpha ^3+50\alpha ^2\beta -15\alpha \beta ^2)f^2+(8\alpha ^2\beta -6\alpha \beta ^2)V\psi f\nonumber \\&+((8\alpha ^2\beta -6\alpha \beta ^2)V+10\alpha ^2\beta -10\alpha \beta ^2+160\alpha ^4\beta +60\alpha ^3\beta ^2\nonumber \\ {}&+4\alpha ^2\beta ^3 -4\alpha ^2\beta ^2+112\alpha ^5+8\alpha ^4-64\alpha ^3)\psi f\nonumber \\&+(8\alpha ^2\beta -2\alpha \beta ^2)V\psi ^2+(48\alpha ^5+80\alpha ^4\beta +28\alpha ^3\beta ^2 +16\alpha ^4\nonumber \\ {}&+12\alpha ^3\beta +2\alpha ^2\beta ^2-24\alpha ^3-16\alpha ^2\beta +8\alpha ^2-4\alpha \beta )\psi ^2\nonumber \\ {}&+(32\alpha ^5+8\alpha ^4\beta -4\alpha ^3\beta ^2-16\alpha ^3+4\alpha ^2\beta )Vp_r] \nonumber \\ {}&+r^2[(-4\alpha ^3-2\alpha ^2\beta )\psi V\rho +(-4\alpha ^3-3\alpha ^2\beta )fV\rho +(4\alpha ^2\beta -\alpha \beta ^2)\psi V^2p_r\nonumber \\ {}&+(24\alpha ^5+24\alpha ^4\beta +6\alpha ^3\beta ^2+8\alpha ^4+2\alpha ^3\beta -\alpha ^2\beta ^2-12\alpha ^3)\psi Vp_r\nonumber \\ {}&+(32\alpha ^5+48\alpha ^4\beta +12\alpha ^3\beta ^2-2\alpha ^2\beta ^3-28\alpha ^3+3\alpha ^2\beta )fVp_r\nonumber \\ {}&+(4\alpha \beta ^2-2\alpha \beta +\beta ^2)\psi ^3V+(-4\alpha ^2\beta +2\beta ^3)f\psi ^2 V\nonumber \\ {}&+(-4\alpha ^2\beta -6\alpha \beta ^2+3\beta ^3)f^2\psi V\nonumber \\ {}&+(-32\alpha ^5-32\alpha ^4\beta -8\alpha ^3\beta ^2-8\alpha ^4+2\alpha ^2\beta ^2+12\alpha ^3\nonumber \\ {}&-8\alpha ^2\beta -3\alpha \beta ^2+12\alpha ^2+2\alpha \beta )\psi ^3\nonumber \\ {}&+(-112\alpha ^5-160\alpha ^4\beta -60\alpha ^3\beta ^2-4\alpha ^2\beta ^3-64\alpha ^4\nonumber \\ {}&-60\alpha ^3\beta -6\alpha ^2\beta ^2+4\alpha \beta ^3+84\alpha ^3 +18\alpha ^2\beta -6\alpha \beta ^2+20\alpha ^2 )f\psi ^2\nonumber \\ {}&+(-88\alpha ^5-240\alpha ^4\beta -166\alpha ^3\beta ^2-26\alpha ^2\beta ^3+4\alpha \beta ^4-52\alpha ^4\nonumber \\ {}&-65\alpha ^3\beta -12\alpha ^2\beta ^2+3\alpha \beta ^3 +112\alpha ^3+75\alpha ^2\beta -12\alpha \beta ^2 )f^2\psi \nonumber \\ {}&+(-8\alpha ^5-104\alpha ^4\beta -122\alpha ^3\beta ^2-24\alpha ^2\beta ^3\nonumber \\ {}&+6\alpha \beta ^4+44\alpha ^3+51\alpha ^2\beta -18\alpha \beta ^2 )f^3]. \end{aligned}$$
(9.5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarnejad, H., Ghorbani, T. & Eidizadeh, F. On the stability of electrostatics stars with modified non-gauge invariant Einstein-Maxwell gravity. Gen Relativ Gravit 55, 135 (2023). https://doi.org/10.1007/s10714-023-03183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03183-8

Keywords

Navigation