Skip to main content
Log in

Genotyping of Interspecific Brassica rapa Hybrids Implying β-Tubulin Gene Intron Length Polymorphism (TBP/cTBP) Assessment

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

This article has been updated

Abstract

The Crucifers family (Brassicaceae) includes a large number of economically important crops, particularly Brassica rapa, which is a widely used model plant for molecular genetic studies of oilseeds. B. rapa is a highly polymorphic species that includes many of genetically distinct subspecies. Considering this fact, the intraspecific hybridization of B. rapa subspecies is considered a promising breeding approach aimed at increasing the genetic diversity of the crop. Previously, the authors have shown that one of such hybrids, B. rapa subsp. oleifera f. biennis × (subsp. rapifera × pekinensis), could be a valuable oil feedstock due to its increased productivity. However, obtaining hybrids and their subsequent breeding would require the involvement of various molecular marker systems. So far, the method of estimating the length polymorphism of the first (TBP) and second (cTBP) introns of β-tubulin has demonstrated its high accuracy and reliability in the identification (DNA-barcoding) of flowering plant taxonomic units at different levels. In the present study, the productivity of such hybrid oil tyfon (B. rapa subsp. oleifera f. biennis × (subsp. rapifera × pekinensis)) was evaluated and DNA-barcoding of different hybrid tyfon lines (B. rapa subsp. oleifera f. biennis × (subsp. rapifera × pekinensis)) and its parental B. rapa subspecies using the β-tubulin intron length polymorphism assessment approach was carried out. Based on the data of the molecular genetic analysis, which included the assessment of length polymorphism of the first and second introns of β-tubulin genes, we were able to confirm the origin of the oil tyfon hybrid (B. rapa subsp. oleifera f. biennis × (subsp. rapifera × pekinensis)) hybrid from Dutch leaf tyfon (B. rapa subsp. rapifera × pekinensis) and winter turnip (B. rapa subsp. oleifera) with high confidence. Along with that, it was possible to differentiate var. glabra and var. laxa accession of napa cabbage (B. rapa subsp. pekinensis) for the first time using combined TBP and cTBP analyses. A variation in the number of amplified regions of β-tubulin introns was noted in different genotypes; however, these differences did not appear to be a specific feature of a particular subspecies/hybrid. This suggests that B. rapa hybrids most likely do not differ in ploidy compared to their parental genotypes. In addition, it was shown that the mentioned oil tyfon hybrid lines of Ukrainian breeding show a significant level of morphological variation despite their common breeding pedigree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

  • 31 January 2024

    Modifications have been made to the Publisher’s Note.

REFERENCES

  1. Allainguillaume, J., Alexander, M., Bullock, J.M., et al., Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats, Mol. Ecol., 2006, vol. 15, no. 4, pp. 1175–1184. https://doi.org/10.1111/j.1365-294X.2006.02856.x

    Article  CAS  PubMed  Google Scholar 

  2. Bardini, M., Lee, D., Donini, P., et al., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 281–291. https://doi.org/10.1139/g03-132

    Article  CAS  PubMed  Google Scholar 

  3. Benbouza, H., Jean-Marie, J., and Jean-Pierre, B., Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, Biotechnol., Agron., Soc. Environ., 2006, vol. 10, no. 2, pp. 77–81.

    CAS  Google Scholar 

  4. Blume, R.Ya., Boychuk, Yu.M., Yemets, A.I., et al., Comparative analysis of fatty acid composition for oils from seeds of tyfon, oil radish and camelina breeding forms and varieties as perspective source for biodiesel production, Factors Exp. Evol. Org., 2016, vol. 18, pp. 61–66.

    Google Scholar 

  5. Blume R.Ya., Lantukh G.V., Yemets A., et al., Comparative analysis of productive potential and fatty acid composition of oil from seeds of spring and winter turnip rape as perspective source for production of diesel biofuel compounds, Factors., 2017, vol. 21, pp. 96–101.

    Google Scholar 

  6. Blume, R.Ya., Lantukh, G.V., Levchuk, I.V., et al., Evaluation of perspectivity of use of a new hybrid oil culture of Tyfon in comparison with its parental species as raw material for biodiesel production, Faktory Eksp. Evol. Org., 2019, vol. 24, pp. 33–39. https://doi.org/10.7124/FEEO.v24.1074

    Article  Google Scholar 

  7. Blume, R.Ya., Rabokon, A.N., and Pirko, Ya.V., β-tubulin intron length polymorphism among forms var. glabra and var. laxa of napa cabbage, Faktory Eksp. Evol. Org., 2020a, vol. 26, pp. 87–92. https://doi.org/10.7124/FEEO.v26.1247

    Article  Google Scholar 

  8. Blume, R.Y., Lantukh, G.V., Levchuk, I.V., et al., Evaluation of potential biodiesel feedstocks: camelina, turnip rape, oil radish and tyfon, Open Agric. J., 2020b, vol. 14, pp. 299–320. https://doi.org/10.2174/1874331502014010299

    Article  CAS  Google Scholar 

  9. Blume, R.Y., Rabokon, A.N., Postovitova, A.S., et al., Evaluating diversity and breeding perspectives of Ukrainian spring camelina genotypes, Cytol. Genet., 2020c, vol. 54, no. 5, pp. 420–436. https://doi.org/10.3103/S0095452720050084

    Article  Google Scholar 

  10. Braglia, L.B., Manca, A.M., Mastromauro, F.M., and Breviario, D., cTBP: A successful intron length polymorphism (ILP)–based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572–585. https://doi.org/10.3390/d2040572

    Article  CAS  Google Scholar 

  11. Braglia, L., Gavazzi, F., Morello, L., et al., On the applicability of the Tubulin-Based Polymorphism (TBP) genotyping method: a comprehensive guide illustrated through the application on different genetic resources in the legume family, Plant Methods, 2020, vol. 16, p. 86. https://doi.org/10.1186/s13007-020-00627-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braglia, L., Lauria, M., Appenroth, K.J., et al., Duckweed species genotyping and interspecific hybrid discovery by tubulin-based polymorphism fingerprinting, Front. Plant Sci., 2021, vol. 12, p. 625670. https://doi.org/10.3389/fpls.2021.625670

    Article  PubMed  PubMed Central  Google Scholar 

  13. Braglia, L., Gavazzi, F., Gianì, S., et al., Tubulin-based polymorphism (TBP) in plant genotyping, in Methods in Molecular Biology, vol. 2638: Plant genotyping, Shavrukov, Y., Ed., New York: Humana, 2023, pp. 387–401. https://doi.org/10.1007/978-1-0716-3024-2_28

  14. Breviario, D., Baird, W.V., Sangoi, S., et al., High polymorphism and resolution in targeted finger-printing with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, pp. 249–259. https://doi.org/10.1007/s11032-007-9087-9

    Article  CAS  Google Scholar 

  15. Breviario, D., Giani, S., and Morello, L., Multiple tubulins: evolutionary aspects and biological implications, Plant J., 2013, vol. 75, pp. 202–218. https://doi.org/10.1111/tpj.12243

    Article  CAS  PubMed  Google Scholar 

  16. Cassida, K.A., Barton, B.A., Hough, R.L., et al., Feed intake and apparent digestibility of hay-supplemented brassica diets for lambs, J. Anim. Sci., 1994, vol. 72, no. 6, pp. 1623–1629. https://doi.org/10.2527/1994.7261623x

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, F., Wu, J., Cai, C., et al., Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection, Sci. Data, 2016, vol. 3, p. 160119. https://doi.org/10.1038/sdata.2016.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu, P.L., Vanderghem, C., MacLean, H.L., and Saville, B.A., Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil, Appl. Energy, 2017, vol. 198, pp. 401–409. https://doi.org/10.1016/j.apenergy.2016.12.001

    Article  CAS  Google Scholar 

  19. Crowell, H., Gamble, A.V., Feng, Y., et al., Impacts of winter grazing on soil health in southeastern cropping systems, Agrosyst. Geosci. Environ., 2022, vol. 5, p. e20240. https://doi.org/10.1002/agg2.20240

    Article  CAS  Google Scholar 

  20. Dalkiewicz-Baranowska, H. and Wilczyńska, M., Morphology and anatomy of vegetative Perko organs with reference to their fodder value, Acta Agrobot., 1981, vol. 34, no. 1, pp. 69–88. https://doi.org/10.5586/aa.1981.005

    Article  Google Scholar 

  21. Downey, R.K., The origin and description of the Brassica oilseed crops, in High and Low Erucic Acid Rapeseed Oils Production, Usage, Chemistry, and Toxicological Evaluation, Kramer, J.K.G., Sauer, F.D., Pigden, W.J., Eds., Toronto: Academic, 1983, pp. 1–20.

    Google Scholar 

  22. Galasso, I., Manca, A., Braglia, L., et al., Genomic fingerprinting of Camelina species using cTBP as molecular marker, Am. J. Plant Sci., 2015, vol. 6, pp. 1184–1200. https://doi.org/10.4236/ajps.2015.68122

    Article  CAS  Google Scholar 

  23. Gavazzi, F., Pigna, G., Braglia, L., et al., Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development, BMC Plant Biol., 2017, vol. 17, p. 237. https://doi.org/10.1186/s12870-017-1186-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gotlin Čuljak, T., Pernar, R., Juran, I., et al., Impact of oilseed rape crop management systems on the spatial distribution of Brassicogethes aeneus (Fabricius 1775): Implications for integrated pest management, Crop Prot., 2016, vol. 89, pp. 129–138. https://doi.org/10.1016/j.cropro.2016.07.017

    Article  Google Scholar 

  25. Gowers, S., Swedes and turnips, in Root and Tuber Crops. Handbook of Plant Breeding, Bradshaw, J., Ed., New York: Springer-Verlag, 2010, vol. 7, pp. 245–289. https://doi.org/10.1007/978-0-387-92765-7_8

  26. Guadalupi, C., Braglia, L., Gavazzi, F., et al., A combinatorial Q-locus and tubulin-based polymorphism (TBP) approach helps in discriminating Triticum species, Genes, 2022, vol. 13, p. 633. https://doi.org/10.3390/genes13040633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guillard, K. and Allinson, D.W., Yield and nutrient content of summer- and fall-grown forage Brassica crops, Can. J. Plant Sci., 1988, vol. 68, no. 3, pp. 721–731. https://doi.org/10.4141/cjps88-085

    Article  Google Scholar 

  28. Hillis, D.M. and Bull, J.J., An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst. Biol., 1993, vol. 42, pp. 182–192. https://doi.org/10.1093/sysbio/42.2.182

    Article  Google Scholar 

  29. Kaneko, Y. and Bang, S.W., Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops, Breed. Sci., 2014, vol. 64, pp. 14–22. https://doi.org/10.1270/jsbbs.64.14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mandáková, T. and Lysak, M.A., Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae), Plant Cell, 2008, vol. 20, no. 10, pp. 2559–2570. https://doi.org/10.1105%2Ftpc.108.062166

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mikić, A., Mihailović, V., Marjanović-Jeromela, A., and Terzić, S., Certain aspects of breeding forage Brassicas, in Quantitative Traits Breeding for Multifunctional Grasslands and Turf, Sokolović, D., Huyghe, C., and Radović, J., Eds., Dordrecht: Springer-Verlag, 2014, pp. 163–166. https://doi.org/10.1007/978-94-017-9044-4_24

  32. Nei, M., Genetic distance between populations, Am Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  33. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 5269–5273. https://doi.org/10.1073%2Fpnas.76.10.5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, H.R., Kang, T., Yi, G., et al., Genome divergence in Brassica rapa subspecies revealed by whole genome analysis on a doubled-haploid line of turnip, Plant Biotechnol. Rep., 2019, vol. 13, pp. 677–687. https://doi.org/10.1007/s11816-019-00565-w

    Article  Google Scholar 

  35. Pavlicek, A., Hrda, S., and Flegr, J., FreeTree – Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 97–99.

    CAS  Google Scholar 

  36. Rabokon, À.Ì., Intron length polymorphism of tubulin genes as an effective tool for genetic plant differentiation, Proc. Natl. Acad. Sci. Ukr., 2021, vol. 10, pp. 30–35. https://doi.org/10.15407/visn2021.10.030

    Article  Google Scholar 

  37. Rabokon, A.N., Pirko, Ya.V., Demkovych, A.Ye., and Blume, Ya.B., Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 3–15. https://doi.org/10.3103/S0095452718010115

    Article  Google Scholar 

  38. Rakhmetov, D.B. and Rakhmetova, S.Î., Summary of introduction and breeding of tyfon (Brassica rapa L. × B. campestris f. biennis DC.) in M.M. Griyshko National Botanical Garden of the NAS of Ukraine, Plant Introd., 2015, vol. 4, pp. 18–30.

    Google Scholar 

  39. Rao, S.C. and Horn, F.P., Planting season and harvest date effects on dry matter production and nutritional value of Brassica spp. in the Southern Great Plains, Agron. J., 1986, vol. 78, pp. 327–333. https://doi.org/10.2134/agronj1986.00021962007800020023x

    Article  Google Scholar 

  40. Robinson, D., Non-traditional forages for grazing: turnips and other brassicas, Proceedings of the Heart of America Grazing Conference, 2006, pp. 62–64.

  41. Ruiter, J., Wilson, D., Maley, S., et al., Management Practices for Forage Brassicas, Hamilton: Forage Brassica Development Group, 2009

    Google Scholar 

  42. Sakharova, V.G., Blume, R.Ya., Rabokon, A.N., et al., Efficiency of genetic diversity assessment of littlepod false flax (Camelina microcarpa Andrz. ex DC.) in Ukraine using SSR- and TBP-marker systems, Rep. Natl. Acad. Sci. Ukr., 2023, vol. 4, pp. 93–102. https://doi.org/10.15407/dopovidi2023.04.093

    Article  Google Scholar 

  43. Sambrook, J. and David, W.R., Molecular Ñloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 2001, vol. 2.

    Google Scholar 

  44. Sohn, S.I., Oh, Y.J., Lee, K.R., et al., Characteristics analysis of F1 hybrids between genetically modified Brassica napus and B. rapa, PLoS One, 2016, vol. 11, no. 9, p. e0162103. https://doi.org/10.1371/journal.pone.0162103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tamura, K., Stecher, G., and Kumar, S., MEGA11: Molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tao, L., Milbrandt, A., Zhang, Y., and Wang, W.-C., Techno-economic and resource analysis of hydroprocessed renewable jet fuel, Biotechnol. Biofuels, 2017, vol. 10, p. 261. https://doi.org/10.1186/s13068-017-0945-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsaruk, I.V. and Rakhmetov, D.B., Peculiarities of the seed productivity formation of Tyfon (Brassica campestris var. oleifera f. biennis D.C. × B. rapa L.) plants under the effect of cultivation technology, Adv. Agritechnol., 2022, vol. 10 no. 1, p. 265592. https://doi.org/10.47414/na.10.1.2022.265592

    Article  Google Scholar 

  48. Villalobos, L.A. and Brummer, J.E., Forage Brassicas stockpiled for fall grazing: yield and nutritive value, Crop, Forage Turfgrass Manage., 2015, vol. 1, pp. 1–6. https://doi.org/10.2134/cftm2015.0165

    Article  Google Scholar 

  49. Warwick, S.I., Brassicaceae in agriculture, in Genetics and Genomics of the Brassicaceae, vol. 9: Plant genetics and genomics: crops and models, Schmidt, R. and Bancroft, I., Eds., New York: Springer-Verlag, 2011, pp. 33–65. https://doi.org/10.1007/978-1-4419-7118-0_2

  50. Warwick, S.I., Simard, M.J., Légère, A., et al., Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz, Theor. Appl. Genet., 2003, vol. 107, pp. 528–539. https://doi.org/10.1007/s00122-003-1278-0

    Article  CAS  PubMed  Google Scholar 

  51. Wiedenhoeft, M.H., Management and environment effects on dry matter yields of three Brassica species, Agron. J., 1993, vol. 85, pp. 549–553. https://doi.org/10.2134/agronj1993.00021962008500030006x

    Article  Google Scholar 

  52. Zhang, Y.W., Jin, D., Xu, C., et al., Regulation of bolting and identification of the α-tubulin gene family in Brassica rapa L. ssp pekinensis, Genet. Mol. Res., 2016, vol. 15, no. 1, p. 15017507. https://doi.org/10.4238/gmr.15017507

    Article  CAS  Google Scholar 

  53. Zhang, L., Cai, X., Wu, J., et al., Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies, Hortic. Res., 2018, vol. 5, p. 50. https://doi.org/10.1038/s41438-018-0071-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was carried out as part of the project of the Department of Targeted Training of Taras Shevchenko National University of Kyiv (National Academy of Sciences of Ukraine) “Identification of the tubulin gene family in Brassica rapa and characterization of their genomic organization in its different subspecies” (2022–2023, 0122U002425).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Rabokon, R. Y. Blume, M. I Chopei or K. S. Afanasieva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabokon, A.M., Blume, R.Y., Sakharova, V.G. et al. Genotyping of Interspecific Brassica rapa Hybrids Implying β-Tubulin Gene Intron Length Polymorphism (TBP/cTBP) Assessment. Cytol. Genet. 57, 538–549 (2023). https://doi.org/10.3103/S0095452723060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723060075

Navigation