Skip to main content
Log in

Use of RNA Interference Technology for Improving Economically Valuable Traits of Cereal Crops

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

This article has been updated

Abstract

RNA interference (RNAi) is a new potential tool for plant breeding by introducing small noncoding RNA sequences with the possibility of silencing gene expression in a sequence-specific manner. The ability to decrease the expression of a certain gene provides the possibility of acquiring a new characteristic through the elimination or accumulation of certain plant traits, which leads to biochemical or phenotypic changes that the original plants do not have. A progress (reached over the past decades) in the application of RNAi for the creation of cereal crops with improved economically valuable traits is described in this literature review. The main stages of the mechanism of gene silencing mediated by short interfering RNAs (siRNAs), peculiarities of their biogenesis, mode of action, and distribution are briefly presented. Numerous examples of the development of different biotechnological approaches to the improvement of cereals using gene transformation and exogenous double-stranded RNA (dsRNA) molecules are summarized. The possibilities of using RNAi technology for changing the agronomic traits of plants, increasing the nutritional value and quality of the grain, and reducing the number of toxic compounds and allergens are highlighted. Considerable attention is paid to the practical results of different applications of RNAi to increase the resistance of grain crops to biotic stress factors (particularly, viruses, bacteria, fungi, pest insects, and nematodes). The examples of using siRNA-mediated RNAi to improve the cereal resistance to abiotic stresses (including drought and salinity) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Change history

  • 31 January 2024

    Modifications have been made to the Publisher’s Note.

REFERENCES

  1. Abdellatef, E., Will, T., Koch, A., et al., Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae, Plant Biotechnol. J., 2015, vol. 13, no. 6, pp. 849–857. https://doi.org/10.1111/pbi.12322

    Article  CAS  PubMed  Google Scholar 

  2. Abdellatef, E., Kamal, N.M., and Tsujimoto, H., Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses, Int. J. Mol. Sci., 2021, vol. 22, p. 7687. https://doi.org/10.3390/ijms22147687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed, M.M.S., Bian, S., Wang, M., et al., RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice, Transgenic Res., 2017, vol. 26, no. 2, pp. 197–207. https://doi.org/10.1007/s11248-016-9999-4

    Article  CAS  PubMed  Google Scholar 

  4. Akbar, S., Tahir, M., Wang, M.B., and Liu, Q., Expression analysis of hairpin RNA carrying Sugarcane mosaic virus (SCMV) derived sequences and transgenic resistance development in a model rice plant, Biomed. Res. Int., 2017, p. 1646140. https://doi.org/10.1155/2017/1646140

  5. Akbar, S., Wei, Y., and Zhang, M.-Q., RNA interference: promising approach to combat plant viruses, Int. J. Mol. Sci., 2022, vol. 23, no. 10, p. 5312. https://doi.org/10.3390/ijms23105312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ali, N., Datta, N., and Datta, K., RNA interference in designing transgenic crops GM, Crops, 2010, vol. 1, no. 4, pp. 207–213. https://doi.org/10.4161/gmcr.1.4.13344

    Article  Google Scholar 

  7. Ali, N., Paul, S., Gayen, D., Sarkar, S.N., and Datta, K., Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1), PLoS One, 2013à, vol. 8, no. 7, p. e68161. https://doi.org/10.1371/journal.pone.0068161

  8. Ali, N., Paul, S., Gayen, D., et al., RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice, Rice, 2013b, vol. 6, p. 12. https://doi.org/10.1186/1939-8433-6-12

    Article  PubMed  PubMed Central  Google Scholar 

  9. Altenbach, S.B., Tanaka, C.K., and Allen, P.V., Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines, J. Cereal Sci., 2014à, vol. 59, pp. 118–125. https://doi.org/10.1016/j.jcs.2013.11.008

  10. Altenbach, S.B., Tanaka, C.K., and Seabourn, B.W., Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour BMC, Plant Biol., 2014b, vol. 14, p. 393. https://doi.org/10.1186/s12870-014-0393-1

    Article  CAS  Google Scholar 

  11. Ansari, A., Wang, C., Wang, J., et al., Engineered dwarf male-sterile rice: a promising genetic tool for facilitating recurrent selection in rice, Front. Plant Sci., 2017, vol. 8, pp. 21–32. https://doi.org/10.3389/fpls.2017.02132

    Article  Google Scholar 

  12. Bai, X., Huang, X., Tian, S., et al., RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp tritici, Mol. Plant Pathol., 2021, vol. 22, pp. 410–421. https://doi.org/10.1111/mpp.13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barro, F., Iehisa, J.C., Giménez, M.J., et al., Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins, Plant Biotechnol. J., 2016, vol. 14, pp. 986–996. https://doi.org/10.1111/pbi.12455

    Article  CAS  PubMed  Google Scholar 

  14. Baulcombe, D., How Virus resistance provided a mechanistic foundation for RNA silencing, Plant Cell, 2019, vol. 31, pp. 1395–1396. https://doi.org/10.1105/tpc.19.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baum, J.A. and Roberts, J.K., Progress towards RNAi-mediated insect pest management, Adv. Insect Physiol., 2014, vol. 47, pp. 250–295. https://doi.org/10.1016/B978-0-12-800197-4.00005-1

    Article  Google Scholar 

  16. Baum, J.A., Bogaert, T., Clinton, W., et al., Control of coleopteran insect pests through RNA interference, Nat. Biotechnol., 2007, vol. 25, no. 11, pp. 1322–1326. https://doi.org/10.1038/nbt1359

    Article  CAS  PubMed  Google Scholar 

  17. Bharathi, J., Anandan, R., Benjamin, L., Muneer, S., and Prakash, M., Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses, Plant Physiol. Biochem., 2023, vol. 194, pp. 600–618. https://doi.org/10.1016/j.plaphy.2022.11.035

    Article  CAS  PubMed  Google Scholar 

  18. Bilir, Ö., Göl, D., Hong, Y., et al., Small RNA-based plant protection against diseases, Front. Plant Sci., 2022, vol. 13, p. 951097. https://doi.org/10.3389/fpls.2022.951097

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blyuss, K.B., Fatehi, F., Tsygankova, V.A., et al., RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants, Front. Plant Sci., 2019, vol. 10, p. 483. https://doi.org/10.3389/fpls.2019.00483

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bolognesi, R., Ramaseshadri, P., Anderson, J., et al., Characterizing the mechanism of action of doublestranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte), PLoS One, 2012, vol. 7, p. e47534. https://doi.org/10.1371/journal.pone.0047534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canto-Pastor, A., Santos, B.A., Valli, A.A., et al., Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 7, pp. 2755–2760. https://doi.org/10.1073/pnas.1814380116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, C.L., Liu, S.S., Liu, Q., et al., An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense, PLoS One, 2015, vol. 10, p. e0122256. https://doi.org/10.1371/journal.pone.0122256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, W., Kastner, C., Nowara, D., et al., Host-induced silencing of Fusarium culmorum genes protects wheat from infection, J. Exp. Bot., 2016, vol. 67, no. 17, pp. 4979–4991. https://doi.org/10.1093/jxb/erw263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, W., Song, X.S., Li, H.P., et al., Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat, Plant Biotechnol. J., 2015, vol. 13, no. 9, pp. 1335–1345. https://doi.org/10.1111/pbi.12352

    Article  CAS  PubMed  Google Scholar 

  25. Cruz, L.F., Rupp, J.L.S., Trick, H.N., and Fellers, J.P., Stable resistance to Wheat streak mosaic virus in wheat mediated by RNAi, In Vitro Cell. Dev. Biol. - Plant, 2014, vol. 50, no. 6, pp. 665–672. https://doi.org/10.1007/s11627-014-9634-0

    Article  CAS  Google Scholar 

  26. Da Silva, L.S., Taylor, J., and Taylor, J.R.N., Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization and protein digestion, J. Agric. Food Chem., 2011, vol. 59, pp. 9265–9270. https://doi.org/10.1021/jf201878p

    Article  CAS  PubMed  Google Scholar 

  27. Dalakouras, A., Wassenegger, M., Dadami, E., et al., Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants, Plant Physiol., 2020, vol. 182, pp. 38–50. https://doi.org/10.1104/pp.19.00570

    Article  CAS  PubMed  Google Scholar 

  28. de Framond, A., Rich, P.J., McMillan, J., and Ejeta, G., Effects on Striga parastitism of transgenic maize armed with RNAi constructs targeting essential S. asitica genes, in Integrating New Technologies for Striga Control: Towards Ending the Witch-Hunt, Singapore: World Scientific Publishing Company, 2007, vols. 185–196. https://doi.org/10.1142/9789812771506_0014

  29. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O., et al., Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency, Agric. Sci. Pract., 2020, vol. 7, no. 2, pp. 24–34. https://doi.org/10.15407/agrisp7.02.024

    Article  Google Scholar 

  30. Dubrovna, O.V., Priadkina, G.O., Mykhalska, S.I., and Komisarenko, A.G., Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene, Regulat. Mech. Biosyst., 2022, vol. 13, no. 4, pp. 385–392. https://doi.org/10.15421/022251

    Article  Google Scholar 

  31. Dutta, T.K., Banakar, P., and Rao, U., The status of RNAi-based transgenic research in plant nematology, Front. Microbiol., 2015, vol. 5, pp. 760. https://doi.org/10.3389/fmicb.2014.00760

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dutta, T.K., Papolu, P.R., Singh, D., et al., Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum, Plant Sci., 2020, vol. 301, p. 110670. https://doi.org/10.1016/j.plantsci.2020.110670

    Article  CAS  PubMed  Google Scholar 

  33. El’konin, L.A., Domanina, I.V., and Ital’yanskaya, Yu.V., Genetic engineering as a tool for modification of seed storage proteins and improvement of nutritional value of cereal grain, Agric. Biol., 2016, vol. 51, no. 1, pp. 17–30. https://doi.org/10.15389/agrobiology.2016.1.17eng

    Article  Google Scholar 

  34. Fahim, M., Ayala-Navarrete, L., Millar, A.A., and Larkin, P.J., Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus in fection in transgenic wheat plants, Plant Biotechnol. J., 2010, vol. 8, pp. 821–834. https://doi.org/10.1111/j.1467-7652.2010.00513.x

    Article  CAS  PubMed  Google Scholar 

  35. Feldmann, K.A., Steroid regulation improves crop yield, Nat. Biotechnol., 2006, vol. 24, pp. 46–47. https://doi.org/10.1038/nbt0106-46

    Article  CAS  PubMed  Google Scholar 

  36. Feng, Z., Yuan, M., Zou, J., et al., Development of marker-free rice with stable and high resistance to rice black-streaked dwarf virus disease through RNA interference, Plant Biotechnol. J., 2021, vol. 19, pp. 212–214. https://doi.org/10.1111/pbi.13459

    Article  CAS  PubMed  Google Scholar 

  37. Fire, A.S., Xu, M.K., Montgomery, S.A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, no. 6669, pp. 806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher, S.J., Reeves, P.T., Hoang, B.T., and Mitter, N.A., Perspective on RNAi-based biopesticides, Front. Plant Sci., 2020, vol. 11, p. 51. https://doi.org/10.3389/fpls.2020.00051

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frizzi, A., Huang, S., Gilbertson, L., et al., Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette, Plant Biotechnol. J., 2008, vol. 6, no. 1, pp. 13–21. https://doi.org/10.1111/j.1467-7652.2007.00290.x

    Article  CAS  PubMed  Google Scholar 

  40. Gantasala, N.P., Kumar, M., Banakar, P., Thakur, P.K., and Rao, U., Functional validation of genes in cereal cyst nematode, Heterodera avenae, using siRNA gene silencing, in Nematodes of Small Grain Cereals: Current Status and Research, Dababat, A., Muminjanov, H., and Smiley, R.W., Eds., Ankara: FAO, 2015, pp. 353–356.

    Google Scholar 

  41. Gasparis, S., Orczyk, W., Zalewski, W., and Nadolska-Orczyk, A., The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness, J. Exp. Bot., 2011, vol. 62, pp. 4025–4036. https://doi.org/10.1093/jxb/err103

    Article  CAS  PubMed  Google Scholar 

  42. Gasparis, S., Orczyk, W., and Nadolska-Orczyk, A., Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat, BMC Plant Biol., 2013, vol. 13, p. 190. https://doi.org/10.1186/1471-2229-13-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghag, S.B., Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens, Physiol. Mol. Plant Pathol., vol. 100, pp. 242–254.

  44. Gil-Humanes, J., Piston, F., Hernando, A., et al., Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat, J. Cereal Sci., 2008, vol. 48, pp. 565–568. https://doi.org/10.1016/j.jcs.2008.03.005

    Article  CAS  Google Scholar 

  45. Gil-Humanes, J., Pistón, F., Tollefsen, S., Sollid, L.M., and Barro, F., Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 39, pp. 17023–17028. https://doi.org/10.1073/pnas.1007773107

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gil-Humanes, J., Piston, F., Gimenez, M.J., Martın, A., and Barro, F., The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough, PLoS One, 2012, vol. 7, no. 9, p. e45937. https://doi.org/10.1371/journal.pone.0045937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Godwin, I.D., Williams, S.B., Pandit, P.S., and Laidlaw, H.K., Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality, In Vitro Cell. Dev. Biol. - Plant, 2009, vol. 45, no. 3, pp. 383–399. https://doi.org/10.1007/s11627-008-9175-5

    Article  CAS  Google Scholar 

  48. Grootboom, A.W., Mkhonza, N.L., Mbambo, Z., et al., Co-suppression of synthesis of major α-kafirin subclass together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum, Plant Cell Rep., 2014, vol. 33, pp. 521–537. https://doi.org/10.1007/s00299-013-1556-5

    Article  CAS  PubMed  Google Scholar 

  49. Guo, J., Gao, S., Lin, Q., Wang, H., et al., Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference, BioMed Res. Int., vol. 2015, p. 861907. https://doi.org/10.1155/2015/861907

  50. Hada, A., Kumari, C., Phani, V., et al., Host-induced silencing of FMRFamide-like peptide genes, flp-1 and flp-12, in rice impairs reproductive fitness of the root-knot nematode Meloidogyne graminicola, Front. Plant Sci., 2020, vol. 11, p. 894. https://doi.org/10.3389/fpls.2020.00894

    Article  PubMed  PubMed Central  Google Scholar 

  51. Halder, K., Chaudhuri, A., Abdin, M.Z., and Datta, A., Tweaking the small non-coding RNAs to improve desirable traits in plant, Int. J. Mol. Sci., 2023, vol. 24, p. 3143. https://doi.org/10.3390/ijms24043143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamilton, A.J. and Baulcombe, D.C., A species of small antisense RNA in posttranscriptional gene silencing in plants, Science, 1999, vol. 286, no. 5441, pp. 950–952 https://doi.org/10.1126/science.286.5441.950

    Article  CAS  PubMed  Google Scholar 

  53. He, F., Zhang, R., Zhao, J., et al., Host induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight, Front. Plant Sci., 2019, vol. 10, p. 1362. https://doi.org/10.3389/fpls.2019.01362

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hernández-Soto, A. and Chacón-Cerdas, R., RNAi crop protection advances, Int. J. Mol. Sci., 2021, vol. 22, no. 22, p. 12148. https://doi.org/10.3390/ijms222212148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Houmard, N.M., Mainville, J.L., Bonin, C.P., et al., High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi, Plant Biotechnol. J., 2007, vol. 5, pp. 605–614. https://doi.org/10.1111/j.1467-7652.2007.00265.x

    Article  CAS  PubMed  Google Scholar 

  56. Hu, X., Richtman, N.M., Zhao, J.Z., et al., Discovery of midgut genes for the RNA interference control of corn rootworm, Sci Rep., 2016, vol. 6, p. 30542. https://doi.org/10.1038/srep30542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu, Y., Wu, Q., Peng, Z., et al., Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure, Sci. Rep., 2017, vol. 7, p. 15950. https://doi.org/10.1038/s41598-017-16230-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, S., Kruger, D.E., Frizzi, A., et al., High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation, Plant Biotechnol. J., 2005, vol. 3, pp. 555–569. https://doi.org/10.1111/j.1467-7652.2005.00146.x

    Article  CAS  PubMed  Google Scholar 

  59. Huang, S., Frizzi, A., Florida, C.A., et al., High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD a-zeins, Plant Mol. Biol., 2006, vol. 61, pp. 525–535. https://doi.org/10.1007/s11103-006-0027-6

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, C.J., Shimono, M., Maeda, S., et al., Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice, Mol. Plant-Microbe Interact., 2009, vol. 22, no. 7, pp. 820–829. https://doi.org/10.1094/MPMI-22-7-0820

    Article  CAS  PubMed  Google Scholar 

  61. Joga, M.R., Zotti, M.J., Smaghe, G., et al., RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far, Front. Physiol., 2016, vol. 7, p. 553. https://doi.org/10.3389/fphys.2016.00553

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johnson, E.T., Proctor, R.H., Dunlap, C.A., and Busman, M., Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference, Mycotoxin Res., 2018, vol. 34, p. 29. https://doi.org/10.1007/s12550-017-0296-8

    Article  CAS  PubMed  Google Scholar 

  63. Kamthan, A., Chaudhuri, A., Kamthan, M., and Datta, A., Small RNAs in plants: recent development and application for crop improvement, Front. Plant Sci., 2015, vol. 6, p. 208. https://doi.org/10.3389/fpls.2015.00208

    Article  PubMed  PubMed Central  Google Scholar 

  64. Katoch, R. and Thakur, N., Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants, Appl. Biochem. Biotechnol., 2013, vol. 169, no. 5, pp. 1579–1605. https://doi.org/10.1007/s12010-012-0046-5

    Article  CAS  PubMed  Google Scholar 

  65. Kaur, R., Choudhury, A., Chauhan, S., et al., RNA interference and crop protection against biotic stresses, Physiol. Mol. Biol. Plants, 2021, vol. 27, no. 10, pp. 2357–2377. https://doi.org/10.1007/s12298-021-01064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawakatsu, T., Hirose, S., Yasuda, H., and Takaiwa, F., Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation, Plant Physiol., 2010, vol. 154, pp. 1842–1854. https://doi.org/10.1104/pp.110.164343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, H.-J., Lee, J.-Y., Yoon, U.-H., Lim, S.H., and Kim, Y.-M., Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice, Int. J. Mol. Sci., 2013, vol. 14, pp. 17073–17084. https://doi.org/10.3390/ijms140817073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koch, A. and Kogel, K.H., New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing, Plant Biotechnol. J., 2014, vol. 12, pp. 821–831. https://doi.org/10.1111/pbi.12226

    Article  CAS  PubMed  Google Scholar 

  69. Koch, A., Kumar, N., Weber, L., et al., Host-induced gene silencing of cytochrome P450 lanosterol C14a-demethylase-encoding genes confers strong resistance to Fusarium species, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 48, pp. 19324–19329. https://doi.org/10.1073/pnas.1306373110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kong, X., Yang, M., Le, B.H., et al., The master role of SiRNAs in plant immunity, Mol. Plant Pathol., 2022, vol. 23, no. 10, pp. 1565–1574. https://doi.org/10.1111/mpp.13250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar, K., Geetika, C., Dass, A., et al., Genetically modified crops: current status and future prospects, Planta, 2020, vol. 251, no. 4, p. 91. https://doi.org/10.1007/s00425-020-03372-8

    Article  CAS  PubMed  Google Scholar 

  72. Kumar, T., Dweikat, I., Sato, S., et al., Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench), Plant Biotechnol. J., 2012, vol. 10, pp. 533–544. https://doi.org/10.1111/j.1467-7652.2012.00685.x

    Article  CAS  PubMed  Google Scholar 

  73. Kusaba, M., Miyahara, K., Iida, S., et al., Low glutenin content1: a dominant mutation that suppresses the glutenin multigene family via RNA silencing in rice, Plant Cell, 2003, vol. 15, pp. 1455–1467. https://doi.org/10.1105/tpc.011452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuwano, M., Ohyama, A., Tanaka, Y., et al., Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene, Mol. Breed., 2006, vol. 18, no. 3, pp. 263–272. https://doi.org/10.1007/s11032-006-9038-x

    Article  CAS  Google Scholar 

  75. Lacombe, S., Bangratz, M., Ta, H., et al., Optimized RNA-silencing strategies for Rice ragged stunt virus resistance in rice, Plants (Basel), 2021, vol. 10, no. 10, p. 2008. https://doi.org/10.3390/plants10102008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Le, D., Chu, H., and Sasaya, T., Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus, GM Crops Food, 2015, vol. 6, no. 1, pp. 47–53. https://doi.org/10.1080/21645698.2015.1025188

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, Z., Liu, Y., and Berger, P.H., Transgenic silencing in wheat transformed with the WSMV-CP gene, Biotechnology, 2005, vol. 4, pp. 62–68. https://doi.org/10.3923/biotech.2005.62.68

    Article  CAS  Google Scholar 

  78. Li, D.H., Liu, H., Yang, Y.L., Zhen, P.P., and Liang, J.S., Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice, Rice Sci., 2009, vol. 16, pp. 14–20. https://doi.org/10.1016/S1672-6308(08)60051-7

    Article  Google Scholar 

  79. Li, J.L., Chen, X.X., Shi, C.C., et al., Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice, Acta Agron. Sin., 2020, vol. 46, pp. 1217–1224. https://doi.org/10.3724/SP.J.1006.2020.92060

    Article  CAS  Google Scholar 

  80. Lilley, C.J., Bakhetia, M., Charlton, W.L., and Urwin, P.E., Recent progress in the development of RNA interference for plant parasitic nematodes, Mol. Plant Pathol., 2007, vol. 8, pp. 701–711. https://doi.org/10.1111/j.1364-3703.2007.00422.x

    Article  CAS  PubMed  Google Scholar 

  81. Liu, F., Yang, B., Zhang, A., Ding, D., and Wang, G., Plant-mediated RNAi for controlling Apolygus lucorum, Front. Plant Sci., 2019, vol. 10, p. 64. https://doi.org/10.3389/fpls.2019.00064

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu, S., Geng, S., Li, A., Mao, Y., and Mao, L., RNAi technology for plant protection and its application in wheat, aBIOTECH, 2021, vol. 2, pp. 365–374. https://doi.org/10.1007/s42994-021-00036-3

  83. Long, X., Liu, Q., Chan, M., et al., Metabolic engineering and profiling of rice with increased lysine, Plant Biotechnol. J., 2012, vol. 11, no. 4, pp. 490–501. https://doi.org/10.1111/pbi.12037

    Article  CAS  PubMed  Google Scholar 

  84. Ma, J., Song, Y., Wu, B., et al., Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference, Transgenic Res., 2011, vol. 20, pp. 1367–1377. https://doi.org/10.1007/s11248-011-9502-1

    Article  CAS  PubMed  Google Scholar 

  85. Machado, A.K., Brown, N.A., Urban, M., et al., RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals, Pest Manage. Sci., 2018, vol. 74, pp. 790–799. https://doi.org/10.1002/ps.4748

    Article  CAS  Google Scholar 

  86. Masanga, J.O., Matheka, J.M., and Omer, R.A., Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture, Plant Cell Rep., 2015, vol. 34, pp. 1379–1387. https://doi.org/10.1007/s00299-015-1794-9

    Article  CAS  PubMed  Google Scholar 

  87. Mezzetti, B., Smagghe, G., Arpaia, S., et al., RNAi: What is its position in agriculture?, J. Pest Sci., 2020, vol. 93, no. 4, pp. 1125–1130. https://doi.org/10.1007/s10340-020-01238-2

    Article  Google Scholar 

  88. Mykhalska, S.I., Sergeeva, L.E., Matveeva, A.Yu., et al., The elevation of free proline content in osmotolerant transgenic corn plants with dsRNA suppressor of proline dehydrogenase gene, Plant Physiol. Genet., 2014, vol. 46, no. 6, pp. 482–489 http:// dspace.nbuv.gov.ua/handle/123456789/159462

  89. Nowara, D., Gay, A., Lacomme, C., et al., HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis, Plant Cell, 2010, vol. 22, pp. 3130–3141. https://doi.org/10.1105/tpc.110.077040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Panwar, V., McCallum, B., and Bakkeren, G., Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat, Plant J., 2013, vol. 73, no. 3, pp. 521–532. https://doi.org/10.1111/tpj.12047

    Article  CAS  PubMed  Google Scholar 

  91. Panwar, V., McCallum, B., and Bakkeren, G., Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus, Plant Mol. Biol., 2013, vol. 81, pp. 595–608. https://doi.org/10.1007/s11103-013-0022-7

    Article  CAS  PubMed  Google Scholar 

  92. Panwar, V., Jordan, M., McCallum, B., and Bakkeren, G., Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat, Plant Biotechnol. J., 2018, vol. 16, pp. 1013–1023. https://doi.org/10.1111/pbi.12845

    Article  CAS  PubMed  Google Scholar 

  93. Pistón, F., Gil-Humanes, J., Rodríguez-Quijano, M., and Barro, F., Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength, PLoS One, 2011, vol. 6, p. e24754. https://doi.org/10.1371/journal.pone.0024754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qi, T., Zhu, X., Tan, C., et al., Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust, Plant Biotechnol. J., 2018, vol. 16, pp. 797–807. https://doi.org/10.1111/pbi.12829

    Article  CAS  PubMed  Google Scholar 

  95. Qi, T., Guo, J., Liu, P., et al., Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat, Mol. Plant, 2019a, vol. 12, pp. 1624–1638. https://doi.org/10.1016/j.molp.2019.09.010

    Article  CAS  PubMed  Google Scholar 

  96. Qi, T., Guo, J., Peng, H., et al., Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley, Int. J Mol. Sci., 2019b, vol. 20, p. 206. https://doi.org/10.3390/ijms20010206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qiao, F., Yang, Q., Wang, C.L., et al., Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice, Euphytica, 2007, vol. 158, pp. 35–45. https://doi.org/10.1007/s10681-007-9422-6

    Article  CAS  Google Scholar 

  98. Rajam, M.V., RNA silencing technology: A boon for crop improvement, J. Biosci., 2020, vol. 45, p. 118.

    Article  CAS  PubMed  Google Scholar 

  99. Raruang, Y., Omolehin, O., Hu, D., et al., Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions, Front. Microbiol., 2020, vol. 11, p. 754. https://doi.org/10.3389/fmicb.2020.00754

    Article  PubMed  PubMed Central  Google Scholar 

  100. Regina, A., Bird, A., Topping, D., et al., High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 10, pp. 3546–3551. https://doi.org/10.1073/pnas.0510737103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Riechen, J., Establishment of broad-spectrum resistance against Blumeria graminis f.sp. tritici in Triticum aestivum by RNAi-mediated knock-down of MLO, J. Verbraucherschutz Lebensmittelsicherh., 2007, vol. 2, p. 120. https://doi.org/10.1007/s00003-007-0282-8

    Article  Google Scholar 

  102. Rodrigues, T.B. and Petrick, J.S., Safety considerations for humans and other vertebrates regarding agricultural uses of externally applied RNA molecules, Front. Plant Sci., 2020, vol. 11, p. 407. https://doi.org/10.3389/fpls.2020.00407

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sang, H. and Kim, J., Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), Plant Biotechnol. Rep., 2020, vol. 14, pp. 1–8. https://doi.org/10.1007/s11816-019-00588-3

    Article  Google Scholar 

  104. Sasaya, T., Nakazono-Nagaoka, E., Saika, H., et al., Transgenic strategies to confer resistance against viruses in rice plants, Front. Microbiol., 2014, vol. 4, p. 409. https://doi.org/10.3389/fmicb.2013.00409

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schaefer, K.L., Parlange, F., Buchmann, G., et al., Cross-kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat, Front. Plant Sci., 2020, vol. 11, p. 253. https://doi.org/10.3389/fpls.2020.00253

    Article  PubMed  PubMed Central  Google Scholar 

  106. Segal, G., Song, R., and Messing, J., A new opaque variant of maize by a single dominant RNA-interference-inducing transgene, Genetics, 2003, vol. 165, pp. 387–397. http://www.genetics.org/content/165/1/ 387.full.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharma, S., Kumar, G., and Dasgupta, I., Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference, Virus Res., 2018, vol. 255, pp. 157–164. https://doi.org/10.1016/j.virusres.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  108. Shepherd, D.N., Mangwende, T., Martin, D.P., et al., Inhibition of maize streak virus (MSV) replication by transient and transgenic expression of MSV replication-associated protein mutants, J. Gen. Virol., 2007, vol. 88, pp. 325–336. https://doi.org/10.1099/vir.0.82338-0

    Article  CAS  PubMed  Google Scholar 

  109. Shimizu, T., Yoshii, M., Wei, T., et al., Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus, Plant Biotechnol. J., 2009, vol. 7, no. 1, pp. 24–32. https://doi.org/10.1111/j.1467-7652.2008.00366.x

    Article  CAS  PubMed  Google Scholar 

  110. Shimizu, T., Nakazono-Nagaoka, E., Uehara-Ichiki, T., et al., Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus, Plant Biotechnol. J., 2011, vol. 9, no. 4, pp. 503–512. https://doi.org/10.1111/j.1467-7652.2010.00571.x

    Article  CAS  PubMed  Google Scholar 

  111. Shimizu, T., Nakazono-Nagaoka, E., Akita, F., et al., Hairpin RNA derived from the gene for Pns9, a viroplasm matrix protein of Rice gall dwarf virus, confers strong resistance to virus infection in transgenic rice plants, J. Biotechnol., 2012, vol. 157, no. 3, pp. 421–427. https://doi.org/10.1016/j.jbiotec.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  112. Shimizu, T., Ogamino, T., Hiraguri, A., et al., Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference, Phytopathology, 2013, vol. 103, no. 5, pp. 513–519. https://doi.org/10.1094/PHYTO-07-12-0165-R

    Article  PubMed  Google Scholar 

  113. Shoup Rupp, J.L., Cruz, L.F., Trick, H.N., and Fellers, J.P., RNAi-mediated, stable resistance to Triticum mosaic virus in wheat, Crop Sci., 2016, vol. 56, pp. 1602–1610. https://doi.org/10.2135/cropsci2015.09.0577

    Article  CAS  Google Scholar 

  114. Singh, K., Dardick, Ch., and Kindu, J.K., RNAi-mediated resistance against viruses in perinnial fruit plants, Plants, 2019, vol. 8, p. 359. https://doi.org/103390/plants8100359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sivamani, E., Brey, C., Dyer, W.E., et al., Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene, Mol. Breed., 2000, vol. 6, pp. 469–477. https://doi.org/10.1023/A:1026576124482

    Article  CAS  Google Scholar 

  116. Sivamani, E., Brey, C.W., Talbert, L.E., et al., Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene, Transgenic Res., 2002, vol. 11, no. 1, pp. 31–41. https://doi.org/10.1023/a:1013944011049

    Article  CAS  PubMed  Google Scholar 

  117. Sun, Y., Sparks, C., Jones, H., et al., Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants, Plant Biotechnol. J., 2019, vol. 17, pp. 852–854. https://doi.org/10.1111/pbi.13067

    Article  PubMed  PubMed Central  Google Scholar 

  118. Thakare, D., Zhang, J., Wing, R., Cotty, P., Schmidt, M., Aflatoxin-free transgenic maize using hostinduced gene silencing, Sci. Adv., 2017, vol. 3, p. e1602382. https://doi.org/10.1126/sciadv.1602382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tiwari, I.M., Jesuraj, A., Kamboj, R., et al., Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani), Sci. Rep., 2017, vol. 7, p. 7521. https://doi.org/10.1038/s41598-017-07749-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsygankova, V.A., Blyuss, K.B., Shysha, E.N., et al., Using microbial biostimulants to deliver RNA interference in plants as an effective tool for biocontrol of pathogenic fungi, parasitic nematodes and insects, in Research Advances in Plant Biotechnology, Plant Science Research and Practices, Blume, Ya.B., Ed., Nova Sci., 2020, Chapter 6, pp. 205–319.

  121. Tyagi, H., Rajasubramaniam, R.M.V., and Dasgupta, I., RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants, Transgen. Res., 2008, vol. 17, no. 5, pp. 897–904. https://doi.org/10.1007/s11248-008-9174-7

    Article  CAS  Google Scholar 

  122. Várallyay, É., Giczey, G., and Burgyán, J., Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum, Arch. Virol., 2012, vol. 157, pp. 1345–1350. https://doi.org/10.1007/s00705-012-1286-y

    Article  CAS  PubMed  Google Scholar 

  123. Verma, V., Sharma, S., Devi, S.V., Rajasubramaniam, S., and Dasgupta, I., Delay in virus accumulation and low virus transmission from transgenic rice plants expressing Rice tungro spherical virus RNA, Virus Genes, 2012, vol. 45, pp. 350–359. https://doi.org/10.1007/s11262-012-0787-9

    Article  CAS  PubMed  Google Scholar 

  124. Wang, M.B., Abbott, D.C., and Waterhouse, P.M., A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus, Mol. Plant Pathol., 2000, vol. 1, no. 6, pp. 347–356. https://doi.org/10.1046/j.1364-3703.2000.2000.00038.x

    Article  CAS  PubMed  Google Scholar 

  125. Wang, Y., Cheng, X., Shan, Q., et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol., 2014, vol. 32, pp. 947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  126. Wang, F., Li, W., Zhu, J., et al., Hairpin RNA targeting multiple viral genes confers strong resistance to rice black-streaked dwarf virus, Int. J. Mol. Sci., 2016, vol. 17, no. 5, p. 705. https://doi.org/10.3390/ijms17050705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, M., Wu, L., Mei, Y., et al., Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat, Plant Biotechnol. J., 2020, vol. 18, no. 12, pp. 2373–2375. https://doi.org/10.1111/pbi.13401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weise, S.E., Aung, K., Jarou, Z.J., et al., Engineering starch accumulation by manipulation of phosphate metabolism of starch, Plant Biotechnol. J., 2012, vol. 10, pp. 545–554. https://doi.org/10.1111/j.1467-7652.2012.00684.x

    Article  CAS  PubMed  Google Scholar 

  129. Wen, S., Wen, N., Pang, J., et al., Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 20543–20548. https://doi.org/10.1073/pnas.1217927109

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wieser, H., Koehler, P., Folck, A., and Becker, D., Characterization of wheat with strongly reduced α-gliadin content, in Gluten Proteins, Lookhart, G.L. and Ng, P.K.W., Eds., St. Paul: AACC Int., 2006, vol. 2006, pp. 13–16

    Google Scholar 

  131. Xu, L., Duan, X., Lv, Y., et al., Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides, Transgen. Res., 2014, vol. 23, no. 2, pp. 389–396. https://doi.org/10.1007/s11248-013-9765-9

    Article  CAS  Google Scholar 

  132. Xu, L., Hou, Q., Zhao, Y., et al., Silencing of alipase maturation factor 2-like gene by wheat-mediated RNAi reduces the survivability and reproductive capacity of the grain aphid Sitobion avenae, Arch. Insect Biochem. Physiol., 2017, vol. 95, no. 3, p. e21392. https://doi.org/10.1002/arch.21392

    Article  CAS  Google Scholar 

  133. Yang, B., Sugio, A., and White, F.F., Os8N3 is a host disease susceptibility gene for bacterial blight of rice, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 10503–10508. https://doi.org/10.1073/pnas.0604088103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yara, A., Yaeno, T., Hasegawa, M., et al., Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases, Plant Cell Physiol., 2007, vol. 48, pp. 1263–1274. https://doi.org/10.1093/pcp/pcm107

    Article  CAS  PubMed  Google Scholar 

  135. Younis, A., Siddique, M.I., Kim, C.-K., and Lim, K.-B., RNA Interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1150–1158. https://doi.org/10.7150/ijbs.10452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, R., Xu, X., Liang, Y., et al., The insect ecdysone receptor is a good potential target for RNAi based pest control, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1171–1180. https://doi.org/10.7150/ijbs.9598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu, H., Wang, Y., Fu, F., and Li, W., Transgenic improvement for biotic resistance of crops, Int. J. Mol. Sci., 2022, vol. 23, p. 14370. https://doi.org/10.3390/ijms232214370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zha, W., Peng, X., Chen, R., et al., Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipter an insect Nilaparvata lugens, PLoS One, 2011, vol. 6, p. e20504. https://doi.org/10.1371/journal.p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang, Z.Y., Fu, F.L., Gou, L., et al., RNA interference-based transgenic maize resistant to maize dwarf mosaic virus, J. Plant Biol., 2010, vol. 53, pp. 297–305. https://doi.org/10.1016/j.jbiotec.2011.03.019

    Article  CAS  Google Scholar 

  140. Zhang, Z.Y., Yang, L., Zhou, S.F., et al., Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference, J. Biotechnol., 2011, vol. 153, pp. 181–187. https://doi.org/10.1016/j.jbiotec.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, Z.Y., Wang, Y.G., Shen, X.J., et al., RNA interference-mediated resistance to maize dwarf mosaic virus, Plant Cell Tissue Organ Cult., 2013, vol. 113, pp. 571–578. https://doi.org/10.1007/s11240-013-0289-z

    Article  CAS  Google Scholar 

  142. Zhang, J., Khan, S.A., Heckel, D.G., and Bock, R., Next-generation insect-resistant plants: RNAi-mediated crop protection, Trends Biotechnol., 2017, vol. 35, pp. 871–882. https://doi.org/10.1016/j.tibtech.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Y., et al., Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids, Pest Manage. Sci., 2018, vol. 74, pp. 2754–2760. https://doi.org/10.1002/ps.5062

    Article  CAS  Google Scholar 

  144. Zhou, Y., Yuan, Y., Yuan, F., et al., RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.), Biotechnol. Lett., 2012, vol. 34, pp. 965–972. https://doi.org/10.1007/s10529-012-0848-0

    Article  CAS  PubMed  Google Scholar 

  145. Zhou, B., Bailey, A., Niblett, C.L., and Qu, R., Control of brown patch (Rhizoctonia solani) in tall fescue (Festuca arundinacea Schreb.) by host induced gene silencing, Plant Cell Rep., 2016, vol. 35, pp. 791–802. https://doi.org/10.1007/s00299-015-1921-7

    Article  CAS  PubMed  Google Scholar 

  146. Zhu, L., Zhu, J., Liu, Z., et al., Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus, Genes, 2017, vol. 8, p. 241. https://doi.org/10.3390/genes8100241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhu, X., Qi, T., Yang, Q., et al., Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust, Plant Physiol., 2017, vol. 175, pp. 1853–1863. https://doi.org/10.1104/pp.17.01223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The publication contains the results of the studies carried out within the project “Development of Modern Methods of Marker-Assisted Selection and Technologies of Short Interfering RNA for the Creation of Highly Productive Varieties of Winter Wheat Innovations with Improved Grain Quality Resistant to Environmental Stresses” funded by the Cabinet of Ministers of Ukraine (KPKVK 6541230; state registration no. 0123U100780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dubrovna.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain the results of any studies using human participants or animals as subjects.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovna, O.V., Mykhalska, S.I. & Komisarenko, A.G. Use of RNA Interference Technology for Improving Economically Valuable Traits of Cereal Crops. Cytol. Genet. 57, 587–610 (2023). https://doi.org/10.3103/S0095452723060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723060026

Keywords:

Navigation