Skip to main content
Log in

Transition Bias and Its Compensation in the Evolutionary Lineage of the Subfamily Murinae (Rodentia): Analysis of Nuclear and Mitochondrial DNA Markers

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

This article has been updated

Abstract

A comparative analysis of the rates of molecular evolution, transition bias, and its evolutionary compensation was carried out on mitochondrial (D-loop, Cytb, COI, 12S RNA) and nuclear (IRBP, Fv) DNA markers in the Murinae subfamily. According to the levels of variability, the markers can be divided into three classes: (1) hypervariable (D-loop), (2) rapidly evolving (Cytb, COI), and (3) conservative (12S RNA, IRBP, Fv). The nature of nucleotide substitutions appears by the levels of variability. With the D-loop, there is a maximum initial bias, which is already partially compensated for during the early stages of speciation, and completely compensated at the stages of species divergence. The pronounced bias within the Cytb and COI genes is only partially compensated, moreover at the genus levels. The 12S RNA, IRBP, and Fv genes with a low level of transition bias do not show evolutionary compensation as such, and the decrease of the ts/tv index in the evolutionary lineage has a technical character and is a consequence of a relative decrease of the difference in the frequencies of transitions and transversions against the background of an absolute increase in the frequencies of substitutions. The positive relationship between the intensity of nucleotide substitutions, the level of transition bias, and the rates of its evolutionary compensation proves that these phenomena have the same primary basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Change history

  • 31 January 2024

    Modifications have been made to the Publisher’s Note.

REFERENCES

  1. Begun, D.J., Holloway, A.K., Stevens, K., et al., Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans, PLoS Bi-ol., 2007, vol. 5, p. e310. https://doi.org/10.1371/journal.pbio.0050310

    Article  CAS  Google Scholar 

  2. Belle, E., Piganeau, G., Gardner, M., and Eyre-Walker, A., An investigation of the variation in the transition bias among various animal mitochondrial DNA, Gene, 2005. https://doi.org/10.1016/j.gene.2005.05.019

  3. Bellinvia, E., A phylogenetic study of the genus Apodemus by sequencing the mitochondrial DNA control region, J. Zool. Syst. Evol. Res., 2004, vol. 42, pp. 289–297. https://doi.org/10.1111/j.1439-0469.2004.00270.x

    Article  Google Scholar 

  4. Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol., 1982, vol. 18, pp. 225–239. https://doi.org/10.1007/BF01734101

    Article  CAS  PubMed  Google Scholar 

  5. Collins, D.W. and Jukes, T.H., Rates of transition and transversion in coding sequences since the human-rodent divergence, Genomics, 1994, vol. 20, pp. 386–396. https://doi.org/10.1006/geno.1994.1192

    Article  CAS  PubMed  Google Scholar 

  6. Fitch, W.M., Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations, J. Mol. Biol., 1967, vol. 26, pp. 499–507. https://doi.org/10.1016/0022-2836(67)90317-8

    Article  CAS  PubMed  Google Scholar 

  7. Ge, D., Feijo, A., Cheng, J., et al., Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species, Zool. J. Linn. Soc., 2019, vol. 187, pp. 518–534. https://doi.org/10.1093/zoolinnean/zlz032

    Article  Google Scholar 

  8. Hall, T.A., BioEdit: a user-friendly biological sequence aligment editor and analysis program for Windowes95/98 NT, Nucleic Acid Simp., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  9. Henn, B.M., Gignoux, C.R., Feldman, M.W., and Mountain, J.L., Characterizing the time dependency of human mitochondrial DNA mutation rate estimates, Mol. Biol. Evol., 2009, vol. 26, pp. 217–230. PMID 18984905 https://doi.org/10.1093/molbev/msn244

    Article  CAS  PubMed  Google Scholar 

  10. Krasova, J., Mikula, O., Mazoch, V., et al., Evolution of the grey-bellied pygmy mouse group: Highly structured molecular diversity with predictable geographic ranges but morphological crypsis, Mol. Phylogenet. Evol., 2019, vol. 130, pp. 143–155. https://doi.org/10.1016/j.ympev.2018.10.016

    Article  PubMed  Google Scholar 

  11. Kumar, S., Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates, Genetics, 1996, vol. 143, 537–548. https://doi.org/10.1093/genetics/143.1.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, W.-H. and Graur, D., Fundamentals of Molecular Evolution, Sunderland: Sinauer Associates, 1991.

    Google Scholar 

  13. Lundrigan, B.L., Jansa, S.A., and Tucker, P.K., Phylogenetic relationships in the genus Mus, based on paternally, maternally, and biparentally inherited characters, Syst. Biol., 2002, vol. 51, pp. 410–431. https://doi.org/10.1080/10635150290069878

    Article  PubMed  Google Scholar 

  14. Meyer, S., Weiss, G., and von Haeseler, A., Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA, Genetics, 1999, vol. 152, pp. 1103–1110. https://doi.org/10.1093/genetics/152.3.1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mezhzherin, S.V., Revision of mice genus Apodemus (Rodentia, Muridae) of Northern Eurasia, Vestn. Zool., 1997, vol. 31, p. 29–41.

    Google Scholar 

  16. Mezhzherin, S.V. and Tereshchenko, V.O., Taxonomic hierarchy and evolutionary scenario of the genus group Apodemus s. l. (Muridae) of the Palearctic based on genetic differentiation in the cyt-b gene, Zoodiversity, 2023a. https://doi.org/10.2307/sysbio/15.3.245

  17. Mezhzherin, S.V. and Tereshchenko, V.O., Genetic divergence and evolutionary transition/transversion rate bias in control region of mitochondrial DNA of Palearctic mice (Murinae), Cytol. Genet., 2023b, vol. 57, pp. 213–220. https://doi.org/10.3103/s0095452723030076

    Article  Google Scholar 

  18. Michaux, J.R., Chevret Filippucci, M.G., et al., Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA, Mol. Phylogenet. Evol., 2002, vol. 23, pp. 123–136. https://doi.org/https://doi.org/10.1016/S1055-7903(02)00007-6

    Article  CAS  PubMed  Google Scholar 

  19. Philippe, H., Brinkmann, H., Lavrov, D.V., et al., Resolving difficult phylogenetic questions: why more sequences are not enough, PLoS Biol., 2011, vol. 9, p. e1000602. https://doi.org/10.1371/journal.pbio.1000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purvis, A. and Bromham, L., Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny, J. Mol. Evol., 1997, vol. 44, pp. 112–119. https://doi.org/10.1007/pl00006117

    Article  CAS  PubMed  Google Scholar 

  21. Rosenberg, M.S., Subramanian, S., and Kumar, S., Patterns of transitional mutation biases within and among mammalian genomes, Mol. Biol. Evol., 2003, vol. 20, pp. 988–993. https://doi.org/10.1093/molbev/msg113

    Article  CAS  PubMed  Google Scholar 

  22. Stoltzfus, A. and Norris, R.W., On the causes of evolutionary transition: transversion bias, Mol. Biol. Evol., 2016. https://doi.org/10.1101/027722

  23. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, pp. 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  24. Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis. Version 11, Mol. Biol. Evol., 2021, vol. 38, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogel, F. and Kopun, M., Higher frequencies of transitions among point mutations, J. Mol. Evol., 1977, vol. 9, pp. 159–180. https://doi.org/10.1007/BF01732746

    Article  CAS  PubMed  Google Scholar 

  26. Yap, M.W., Young, G.R., Varnaite, R., et al., Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses, PLoS Genet., 2020. https://doi.org/10.1371/journal.pgen.1008471

  27. Yasuda, S.P., Vogel, P., Tsuchiya, K., et al., Phylogeographic patterning of mtDNA in the widely distributed harvest mouse (Micromys minutus) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene, Can. J. Zool., 2005, vol. 83. https://doi.org/10.1139/z05-139

  28. Young, G.R., Yap, M.W., Michaux, J.R., et al., Evolutionary journey of the retroviral restriction gene Fv1, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 10130–10135. https://doi.org/10.1073/pnas.180851611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study did not receive any certain grant from financial organs in governmental, commercial, or noncommercial sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mezhzherin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezhzherin, S.V., Morozov-Leonov, S.Y. & Tereshchenko, V.O. Transition Bias and Its Compensation in the Evolutionary Lineage of the Subfamily Murinae (Rodentia): Analysis of Nuclear and Mitochondrial DNA Markers. Cytol. Genet. 57, 550–555 (2023). https://doi.org/10.3103/S0095452723060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723060051

Navigation