Skip to main content
Log in

Above-ground biomass estimation by developing allometric equations for Theobroma cacao in Tabasco, Mexico

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The cocoa tree (Theobroma cacao L.), widely distributed in southern and central Mexico, has many economic and ecological functions. However, there is a lack of data and information regarding the aboveground biomass (AGB) of this species in Mexico, which hampers understanding of its carbon sequestration potential. The objectives of this study were (1) to develop allometric equations to estimate AGB and (2) to determine the relationships of AGB components in cacao trees. Twenty-one trees were destructively sampled and separated into components (trunk, branches, leaves) at the Chontalpa subregion of Tabasco, a large cocoa production area. Samples of biomass cocoa trees were used to determine their carbon content. A typical cacao tree in our study area is 6.64 m in height, with a diameter at breast height (dbh) of 13.29 cm and with dry aboveground biomass of 37.02 kg. We found that about 50% of the biomass of a cacao tree is concentrated in the trunk while stems of different sizes, leaves, and fruits account for the other 50%. Seven AGB models were designed using dbh, basal diameter at 30 cm (d30), total height (h), canopy area (Ac), canopy height (Ch), and crown width (Cw) as biomass predictors. The dbh was the best-correlated independent variable with all AGB components. Selected models showed adequate fit and performance with high R2 (ca. 95%) in estimating AGB, but the most appropriate allometric equation was Ln (TB) = − 4.20 + 1.19 * ln(dbh) + 2.34 * ln(h) because this model had higher R2, lower Akaike criterion, and Mallow’s cp values. We recommend the use of this model to calculate aboveground biomass and carbon content for cacao trees in agroforestry systems similar to those of our study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah MA, Mata-González R, Noller JS, Ochoa CG (2020) Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agr Ecosyst Environ 290:106762. https://doi.org/10.1016/j.agee.2019.10676262

    Article  CAS  Google Scholar 

  • Abich A, Alemu A, Gebremariam Y, Mucheye T, Gurebiyaw K, Kassie M (2021) Allometric models for predicting aboveground biomass of Combretum-Terminalia woodlands in Amhara, Northwest Ethiopia. Trees for People 5:100122. https://doi.org/10.1016/j.tfp.2021.100122

    Article  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agr Ecosyst Environ 99:15–27. https://doi.org/10.1016/S0167-8809(03)00138-5

    Article  CAS  Google Scholar 

  • Altanzagas B, Luo Y, Altansukh B, Dorjsuren C, Fang J, Hu H (2019) Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests 10(8):1–17. https://doi.org/10.3390/f10080661

    Article  Google Scholar 

  • Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería Am 46:45–50

    Google Scholar 

  • Andrade HJ, Segura MA, Feria M (2021) Allometric models for estimating belowground biomass of individual coffee bushes growing in monoculture and agroforestry systems. Agroforest Syst 95:215–226. https://doi.org/10.1007/s10457-020-00575-6

    Article  Google Scholar 

  • Araujo TM, Higuchi N, de Carvalho JJA (1999) Comparison of formula for biomass content determination in a tropical rain forest site in the state of Paraná, Brazil. For Ecol Manag 117:43–52

    Article  Google Scholar 

  • Asigbaase M, Sjogersten S, Lomax BH, Dawoe E (2019) Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 14(1):1–19. https://doi.org/10.1371/journal.pone.0210557

    Article  CAS  Google Scholar 

  • Asigbaase M, Dawoe E, Lomax BH, Sjogersten S (2021) Biomass and carbon stocks of organic and conventional cocoa agroforests, Ghana. Agr Ecosyst Environ 306:107192. https://doi.org/10.1016/j.agee.2020.107192

    Article  CAS  Google Scholar 

  • Balima LH, Nacoulma BMI, Bayen P, Dimobe K, Kouamé FNG, Thiombiano A (2020) Aboveground biomass allometric equations and distribution of carbon stocks of the African oak (Afzelia africana Sm.) in Burkina Faso. J for Res 31(5):1699–1711. https://doi.org/10.1007/s11676-019-00955-4

    Article  CAS  Google Scholar 

  • Bandanaa J, Egyir IS, Asante I (2014) Cocoa farming households in Ghana consider organic practices as climate smart and livelihoods enhancer. Agric Food Security 5(29):1–9. https://doi.org/10.1186/s40066-016-0077-1

    Article  Google Scholar 

  • Beer J, Ibrahim M, Somarriba E, Barrance A, Leakey R (2004) Establecimiento y manejo de árboles en sistemas agroforestales. In: Cordero J, Boshier D (eds) Árboles de centroamérica. OFI-CATIE, Turrialba, Costa Rica, pp 197–242

    Google Scholar 

  • Blanco-Canqui H, Wienhold BJ, Jin VL, Schmer MR, Kibet LC (2017) Long-term tillage impact on soil hydraulic properties. Soil and Tillage Research 170:38–42. https://doi.org/10.1016/j.still.2017.03.001

    Article  Google Scholar 

  • Braga DP, Domene F, Gandara FB (2019) Shade trees composition and diversity in cacao agroforestry systems of southern Pará, Brazilian Amazon. Agrofor Syst 93(4):1409–1421. https://doi.org/10.1007/s10457-018-0250-6

    Article  Google Scholar 

  • Chastain RA, Currie WS, Townsend PA (2006) Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. For Ecol Manag 231:63–77

    Article  Google Scholar 

  • Chavan SB, Dhillon RS, Rizvi RH, Sirohi C, Handa AK, Bharadwaj KK, Johar V, Kumar T, Singh P, Daneva V, Kumari S (2022) Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India. Environ Dev Sustain. https://doi.org/10.1007/s10668-021-01996-8

    Article  Google Scholar 

  • Cruz MZ (2007) Sistema de ecuaciones para estimación y participación de biomasa aérea en Atopixco, Zacualtipán, Hidalgo. Tesis maestría. Universidad Autónoma Chapingo. Chapingo, Estado de México

  • Daba DE, Soromessa T (2019) Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species. Ecosyst Health Sustain 5(1):86–97. https://doi.org/10.1080/20964129.2019.1591169

    Article  Google Scholar 

  • Dimobe K, Goetze D, Oue´draogo A, Mensah S, Akpagana K, Porembski S, Thiombiano A (2018) Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor Syst 71(3):1–14

    Google Scholar 

  • Dixon RK (1995) Agroforestry systems: Sources or sinks of greenhouse gases? Agrofor Syst 31:99–116. https://doi.org/10.1007/BF00711719

    Article  Google Scholar 

  • Dossa E, Fernandes ECM, Reid WS, Ezui K (2008) Above-and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115. https://doi.org/10.1007/s10457-007-9075-4

    Article  Google Scholar 

  • Douterlungne D, Herrera-Gorocica AM, Ferguson BG, Siddique I, Soto-Pinto L (2013) Ecuaciones alométricas para estimar biomasa y carbono de cuatro especies leñosas neotropicales con potencial para la restauración. Agrociencia 47:385–397

    Google Scholar 

  • Duran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P (2020) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecol Ind 117:106550

    Article  Google Scholar 

  • FAO (2000) Global Forest Resources Assessment 2000 (FRA 2000). Main Report. Working Paper 140. Food and Agriculture Organization of the United Nations, Forestry Department, Forest Resource Assessment Programme. Rome

  • Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262(8):1400–1408

    Article  Google Scholar 

  • Franklin SL Jr, Pindyck RS (2018) Tropical forests, tipping points, and the social cost of deforestation. Ecol Econ 153:161–171

    Article  Google Scholar 

  • Gama-Rodrigues EF, Gama-Rodrigues AC, Nair PKR (2011) Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In: Kumar B, Nair P (eds) Carbon sequestration potential of agroforestry systems. Advances in Agroforestry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1630-8_5

  • Ganamé M, Bayen P, Dimobe K, Ouédraogo I, Thiombiano A (2020) Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. Burkina Faso Heliyon 6(4):e03805

    PubMed  Google Scholar 

  • González Z., M. (2008) Estimación de la biomasa aérea y la captura de carbono en regeneración natural de Pinus maximinoi H. E. Moore, Pinus oocarpa var. ochoterenai Mtz. y Quercus sp. en el norte del estado de Chiapas, México. Tesis de magister scientiae en manejo y conservación de bosques naturales y biodiversidad. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica

  • INEGI (2018) Cuéntame. Información por entidad. Instituto Nacional de Estadística y Geografía (INEGI). [online] Available at: http://cuentame.inegi.org.mx/Monografias/default.aspx?Tema=ME. Accessed 06 Dec 2018

  • IPCC (Intergovernmental Panel on Climate Change) (2003) Good practice guidance for land use, land-use change and forestry. Institute for global environmental strategies (IGES), Hayama, Kanagawa. http://www.ipcc-nggip.iges.or.jp. Accessed 16 Jun 2016

  • Jacobi J, Schneiderb M, Mariscal MP, Huber S, Weidmann S, Bottazzi P (2015) Farm resilience in organic and non-organic cocoa farming systems in Alto Beni, Bolivia. Agroecol Sustain Food Syst 39:798–823. https://doi.org/10.1080/21683565.2015.1039158

    Article  Google Scholar 

  • Kaonga ML, Bayliss-Smith TP (2010) Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia. Agrofor Syst 78(3):217–232

    Article  Google Scholar 

  • Kebede B, Soromessa T (2018) Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst Health Sustain 4(1):1–12

    Article  Google Scholar 

  • Klinge H, Herrera R (1983) Phytomass structure of natural plant communities on spodosolsin Southern Venezuela: the tall Amazon Caatinga forest. Vegetation 53:65–64

    Article  Google Scholar 

  • Koelemeijer IA, Tack AJ, Zewdie B, Nemomissa S, Hylander K (2021) Management intensity and landscape configuration affect the potential for woody plant regeneration in coffee agroforestry. Agr Ecosyst Environ 313:107384

    Article  Google Scholar 

  • Koh LP, Zeng Y, Sarira TV, Siman K (2021) Carbon prospecting in tropical forests for climate change mitigation. Nat Commun 12(1):1–9

    Article  Google Scholar 

  • Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012) Allometric equations for estimating biomass in agricultural landscapes: II. Belowground Biomass Agric Ecosyst Environ 158:225–234. https://doi.org/10.1016/j.agee.2012.05.010

    Article  Google Scholar 

  • Mokria M, Mekuria W, Gebrekirstos A, Aynekulu E, Belay B, Gashaw T, Bräuning A (2018) Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia. Environ Res Lett 13(2):024022

    Article  ADS  Google Scholar 

  • Montagnini F, Nair PKR (2012) Carbon sequestration: an underexploited environmental benefit of agroforestry systems, new vistas in agroforestry. Springer, New York, pp 281–95

    Google Scholar 

  • Morán-Villa VL, Monterroso-Rivas AI, Márquez-Berber SR, Valdes-Velarde E (2022) Floristic composition and arrangement of agroforestry systems of cocoa in Tabasco, Mexico [Composición florística y arreglo de sistemas agroforestales de cacao en Tabasco, México]. Trop Subtrop Agroecosyst 25(2):1–19

    Article  Google Scholar 

  • Moreira BM, Goyanes G, Pina P, Vassilev O, Heleno S (2021) Assessment of the influence of survey design and processing choices on the accuracy of tree diameter at breast height (DBH) measurements using UAV-based photogrammetry. Drones 5(2):43

    Article  Google Scholar 

  • Mortimer R, Saj S, David C (2018) Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst 92(6):1639–1657

    Article  Google Scholar 

  • Negash M, Starr M, Kanninen M, Berhe L (2013) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst 87:953–966

    Article  Google Scholar 

  • Noumi VN, Djongmo VA, Nyeck B, Mbobda RBT, Zapfack L (2018) Vegetation structure, carbon sequestration potential and species conservation in four agroforestry systems in Cameroon (Tropical Africa). Acta Bot Bras 32:212–221

    Article  Google Scholar 

  • Nugroho NP (2014) Relationships between total tree height and diameter at breast height for tropical peat swamp forest tree species in Rokan Hilir District, Riau Province. Indones J for Res 1(2):89–107

    Google Scholar 

  • Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R (2012) Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass–a comparative study. For Ecol Manag 270:78–84. https://doi.org/10.1016/j.foreco.2012.01.004

    Article  Google Scholar 

  • Picard N, Laurent Saint-André MH (2012) Manual de construcción de ecuaciones alométricas para estimar el volumen y la biomasa de Los Árboles. Cirad http://www.fao.org/docrep/018/i3058s/i3058s.pdf

  • Rügnitz MT, Chacón ML, Porro R (2009) Guía para la determinación de carbono en pequeñas propiedades rurales 1 eds. Lima, Centro Mundial Agroflorestal (ICRAF)/Consórcio Iniciativa Amazónica (IA), p 79

    Google Scholar 

  • Saha SK, Ramachandran Nair PK, Nair VD, Mohan Kumar B (2010) Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant Soil 328:433–446. https://doi.org/10.1007/s11104-009-0123-x

    Article  CAS  Google Scholar 

  • Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16(8):2237–2244

    Article  Google Scholar 

  • Segura M, Andrade Castañeda HJ (2008) ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Agrofor Am 46:89–96

    Google Scholar 

  • Smiley GL, Kroschel J (2008) Temporal change in carbon stocks of Cocoa–Gliricidia agroforests in central Sulawesi, Indonesia. Agrofor Syst 73(3):219–231. https://doi.org/10.1007/s10457-008-9144-3

    Article  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H et al (2013) Agriculture, ecosystems and environment carbon stocks and cocoa yields in agroforestry systems of central America. Agr Ecosyst Environ 173:46–57. https://doi.org/10.1016/j.agee.2013.04.013

    Article  Google Scholar 

  • Shepherd D, Montagnini F (2001) Carbon sequestration potential in mixed and pure tree plantations in the humid tropics. J Trop For Sci 13:450–459

    Google Scholar 

  • Traore´ S, Djomo AN, N’guessan AK, Coulibaly B, Ahoba A, Gnahoua GM, N’guessan EK, Adou Yao CY, N’Dja JK, Guede NZ (2018) Stand structure, allometric equations, biomass and carbon sequestration capacity of Acacia mangium Wild. (Mimosaceae) in Cote d’Ivoire. Open J for 8:42–60

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes–a review. J App Ecol 48(3):619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x

    Article  Google Scholar 

  • UNFCCC (2008) Kyoto Protocol Reference Manual on accounting of emissions and assigned amount, UNFCCC, https://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystems services: the role of agroforestry in cocoa cultivation. Agroforest Syst 88:947–956. https://doi.org/10.1007/s10457-014-9762-x

    Article  Google Scholar 

  • Van Vinh T, Marchand C, Linh TVK, Vinh DD, Allenbach M (2019) Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculata tropical managed mangrove forests (Southern Viet Nam). For Ecol Manag 434:131–141

    Article  Google Scholar 

  • Vanhove W, Vanhoudt N, Van Damme P (2016) Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agric Ecosyst Environ 219:14–25. https://doi.org/10.1016/j.agee.2015.12.005

    Article  Google Scholar 

  • Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8(8):269

    Article  Google Scholar 

  • Viera M, Rodríguez-Soalleiro R (2019) A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil. Forests 10(7):536

    Article  Google Scholar 

  • Wirabuana P, Setiahadi R, Sadono R, Lukito M, Martono DS, Matatula J (2020) Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas J Biol Divers. https://doi.org/10.13057/biodiv/d210947

    Article  Google Scholar 

  • Xiang W, Zhou J, Ouyang S, Zhang S, Lei P, Li J, Deng X, Fang X, Forrester DI (2016) Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. Eur J for Res 135:963–979. https://doi.org/10.3390/f10100862

    Article  CAS  Google Scholar 

  • Zhang X, Cao QV, Xiang C, Duan A, Zhang J (2017) Predicting total and component biomass of Chinese fir using a forecast combination method. iForest Biogeosci for 10(4):687–691. https://doi.org/10.3832/ifor2243-010

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the important contribution of cacao producers in Tabasco, who facilitated the sampling by donating the trees. This study was partly funded by the National Council of Science and Technology (CONACYT-Mexico), through the scholarship grant to the first author.

Author information

Authors and Affiliations

Authors

Contributions

VLM-V—Conceptualization, Data curation, Investigation, Formal analysis, Project administration, Writing-original draft, Writing-review and editing, AIM-R—Supervision, Conceptualization, Funding acquisition, Validation, Writing-review and editing; RM-G—Visualization, Supervision, Writing-review and editing; SRM-B—Funding acquisition, Writing-review and editing; MABA—Formal analysis, Writing-review and editing, EV-V.—Writing-review and editing; RH-S, Resources, Writing-review and editing.

Corresponding author

Correspondence to Vanessa Lisbeth Morán-Villa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán-Villa, V.L., Monterroso-Rivas, A.I., Mata-González, R. et al. Above-ground biomass estimation by developing allometric equations for Theobroma cacao in Tabasco, Mexico. Agroforest Syst 98, 537–549 (2024). https://doi.org/10.1007/s10457-023-00928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-023-00928-x

Keywords

Navigation