Skip to main content

Advertisement

Log in

Topical Delivery of Methoxsalen Co-loaded Curcumin Using Hybrid Nanocarrier-Based Polymeric Hydrogel for Synergistic Therapy in the Treatment of Psoriasis

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Psoriasis is a chronic autoimmune inflammatory cutaneous disorder, and single-drug therapy is inadequate for curing this disease. Dual-drug therapy with multi-target synergistic effects may be an alternative approach to eradicate psoriasis. This study reports the development of a lipid-polymer hybrid nanoparticle (LPHNP)-based polymeric hydrogel for topical delivery of methoxsalen (MS) and curcumin (CUR) for the management of psoriasis.

Methods

MS-CUR-LPHNPs were prepared using the emulsification solvent evaporation method and incorporated into a Carbopol-940-based polymeric hydrogel for topical application. The antipsoriatic efficacy of the hydrogel was evaluated in an imiquimod (IMQ)-induced psoriasis rat model.

Results

Methoxsalen-co-loaded curcumin lipid-polymer hybrid nanoparticles (MS-CUR-LPHNPs, 206.8 ± 3.2 nm) were successfully prepared with a narrow polydispersity index (PDI = 0.174), negative zeta potential (− 27.1 ± 6.09 mV), and entrapment efficiency of 84.90 ± 0.68%. The polymeric hydrogel showed all the desirable characteristics essential for topical application. The MS-CUR-LPHNP-based polymeric hydrogel achieved superior anti-psoriatic effects in the IMQ-induced psoriasis rat model because of the high dermal retention of dual drugs for an extended period compared to a standard marketed anti-psoriatic formulation.

Conclusion

Therefore, we concluded that the developed MS-CUR-LPHNPs (D6-HNPs) were novel, providing synergistic therapeutic efficacy and promising prospects for the management of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data available on request to the corresponding author.

References

  1. Griffiths CEM, van der Walt JM, et al. The global state of psoriasis disease epidemiology: a workshop report. Br J Dermatol. 2017;177(1):e4–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saleem S, Iqubal MK, Garg S, et al. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv. 2020;17(6):817–38.

    Article  CAS  PubMed  Google Scholar 

  4. Yamanaka K, Yamamoto O, Honda T. Pathophysiology of psoriasis: a review. J Dermatol. 2021;48(6):722–31.

    Article  CAS  PubMed  Google Scholar 

  5. Bakshi H, Nagpal M, Singh M, et al. Treatment of psoriasis: a comprehensive review of entire therapies. Curr Drug Saf. 2020;15(2):82–104.

    Article  PubMed  Google Scholar 

  6. Rapalli VK, Kaul V, Waghule T, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci. 2020;152: 105438.

    Article  CAS  PubMed  Google Scholar 

  7. Yu Z, Meng X, Zhang S, et al. Recent progress in transdermal nanocarriers and their surface modifications. Molecules. 2021;26(11):3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery of various skin diseases. Int J Pharm. 2019;555:49–62.

    Article  CAS  PubMed  Google Scholar 

  9. Yu YQ, Yang X, Wu XF, et al. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol. 2021;9: 646554.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv. 2017;8(11):967–85.

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24.

    Article  CAS  PubMed  Google Scholar 

  12. Chen ZJ, Yang SC, Liu XL, et al. Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett. 2020;20(6):4177–87.

    Article  CAS  PubMed  Google Scholar 

  13. Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhuang Y, Zhao Y, Wang B, et al. Strategies for preparing different types of lipid polymer hybrid nanoparticles in targeted tumor therapy. Curr Pharm Des. 2021;27(19):2274–88.

    Article  CAS  PubMed  Google Scholar 

  15. Du X, Gao N, Song X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv. 2021;28(1):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fereig SA, El-Zaafarany GM, Arafa MG, et al. Self-assembled tacrolimus-loaded lecithin-chitosan hybrid nanoparticles for in vivo management of psoriasis. Int J Pharm. 2021;608: 121114.

    Article  CAS  PubMed  Google Scholar 

  17. Pukale SS, Mittal A, Chitkara D. Topical application of vitamin D3-loaded hybrid nanosystem to offset imiquimod-induced psoriasis. AAPS PharmSciTech. 2021;22(7):238.

    Article  CAS  Google Scholar 

  18. Jaiswal PK, Das S, Das MK. Boosting the skin delivery of curcumin through stearic acid-ethyl cellulose blend hybrid nanocarriers-based approach for mitigating psoriasis. Int J Appl Pharm. 2021;13(3):150–64.

    Article  CAS  Google Scholar 

  19. Pukale SS, Sharma S, Dalela M, et al. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino mice. Acta Biomater. 2020;115:393–409.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Wang J, Liu L, et al. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms. Front Pharmacol. 2022;13: 903160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics. 2007;4(6):807–18.

  22. Doppalapudi S, Jain A, Chopra DK, Khan W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci. 2017;96:515–29.

    Article  CAS  PubMed  Google Scholar 

  23. Pitzanti G, Rosa A, Nieddu M, et al. Transcutol® P containing SLNs for improving 8-methoxypsoralen skin delivery. Pharmaceutics. 2020;12(10):973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akiba I, Terada N, Hashida S, et al. Encapsulation of a hydrophobic drug into a polymer-micelle core explored with synchrotron SAXS. Langmuir. 2010;26(10):7544–51.

    Article  CAS  PubMed  Google Scholar 

  25. Dave V, Tak K, Sohgaura A, et al. Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130–42.

    Article  CAS  PubMed  Google Scholar 

  26. Hu FQ, Wu XL, Du YZ, et al. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm. 2008;69(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan H, Lu LJ, Du YZ, et al. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: in vitro transport and in vivo absorption. Mol Pharm. 2011;8(1):225–38.

    Article  CAS  PubMed  Google Scholar 

  28. Yu F, Tu Y, Luo S, et al. Dual-drug backboned polyprodrug with a predefined drug combination for synergistic chemotherapy. Nano Lett. 2021;21(5):2216–23.

    Article  CAS  PubMed  Google Scholar 

  29. Nava-Arzaluz MG, Piñón-Segundo E, Ganem-Rondero A. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Patent on Drug Delivery and Formulation. 2012;6(3):209–23.

    Article  CAS  Google Scholar 

  30. Duan R, Li C, Wang F, et al. Polymer-lipid hybrid nanoparticles-based paclitaxel and etoposide combinations for the synergistic anticancer efficacy in osteosarcoma. Colloids Surf B. 2017;159:880–7.

    Article  CAS  Google Scholar 

  31. Anjum MM, Kanoujia J, Parashar P, et al. Evaluation of a polymer-lipid-polymer system utilising hybrid nanoparticles of dapsone as a novel antiacne agent. Curr Drug Ther. 2016;11:86–100.

    Article  CAS  Google Scholar 

  32. Huang Q, Cai T, Li Q, et al. Preparation of psoralen polymer-lipid hybrid nanoparticles and their reversal of multidrug resistance in MCF-7/ADR cells. Drug Deliv. 2018;25(1):1056–66.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dave V, Yadav RB, Kushwaha K, et al. Lipid-polymer hybrid nanoparticles: development & statistical optimization of norfloxacin for topical drug delivery system. Bioact Mater. 2017;2(4):269–80.

    Article  Google Scholar 

  34. Khan MA, Khan S, Kazi M, et al. Norfloxacin loaded lipid polymer hybrid nanoparticles for oral administration: fabrication, characterization, in silico modelling and toxicity evaluation. Pharmaceutics. 2021;13(10):1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ling G, Zhang P, Zhang W, et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release. 2010;148(2):241–9.

    Article  CAS  PubMed  Google Scholar 

  36. Dash S, Murthy PN, Nath LK, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  PubMed  Google Scholar 

  37. Madan JR, Khobaragade S, Dua K, Awasthi R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatol Ther. 2020;33(3): e13370.

    Article  CAS  PubMed  Google Scholar 

  38. Asad MI, Khan D, Rehman AU, et al. Development and in vitro/in vivo evaluation of pH-sensitive polymeric nanoparticles loaded hydrogel for the management of psoriasis. Nanomaterials (Basel). 2021;11(12):3433.

    Article  CAS  PubMed  Google Scholar 

  39. Sun L, Liu Z, Wang L, et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release. 2017;254:44–54.

    Article  CAS  PubMed  Google Scholar 

  40. Talele S, Nikam P, Gosh B, et al. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Int J Pharm Ed Res. 2017;51(4S):S580–7.

    CAS  Google Scholar 

  41. Rajan R, Vasudevan DT. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. J Adv Pharm Technol Res. 2012;3(2):112–6.

    Article  CAS  Google Scholar 

  42. Singha LR, Das MK. Effect of Mesua ferrea Linn. seed kernel oil on percutaneous absorption of diltiazem hydrochloride through pig ear epidermis: a mechanistic study. J Drug Deliv Sci Technol. 2021;64:102628.

  43. Mei Z, Chen H, Weng T, et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  44. Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol. 2018;120(Pt A):1322–34.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar JR, Sulekha RK. Design and development of ciprofloxacin lipid polymer hybrid nanoparticle by response surface methodology. Res J Pharm Technol. 2020;13(7):3249–56.

    Article  Google Scholar 

  46. Gangadevi V, Thatikonda S, Pooladanda V, et al. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J Nanobiotechnol. 2021;19(1):101.

  47. Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design. Daru J Pharm Sci. 2015;23(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mukherjee A, Waters AK, Kalyan P, et al. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed. 2019;14:1937–52.

    Article  CAS  Google Scholar 

  49. Sohaib M, Shah SU, Shah KU, et al. Physicochemical characterization of chitosan-decorated finasteride solid lipid nanoparticles for skin drug delivery. Biomed Res Int. 2022:7792180.

  50. Mirnezami SMS, Heydarinasab A, Akbarzadehkhyavi A, et al. Development and optimization of lipid-polymer hybrid nanoparticles containing melphalan using central composite design and its effect on ovarian cancer cell lines. Iran J Pharm Res. 2021;20(4):213–228.

  51. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16.

    Article  Google Scholar 

  52. Dali P, Shende P. Self-assembled lipid polymer hybrid nanoparticles using combinational drugs for migraine via intranasal route. AAPS PharmSciTech. 2022;24(1):20.

    Article  PubMed  Google Scholar 

  53. Imam SS, Gilani SJ, Bin Jumah MN, et al. Harnessing lipid polymer hybrid nanoparticles for enhanced oral bioavailability of thymoquinone: in vitro and in vivo assessments. Polymers (Basel). 2022;14(18):3705.

    Article  CAS  PubMed  Google Scholar 

  54. Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, et al. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: formulation and characterization. Appl Biochem Biotechnol. 2022;194(8):3733–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shafie MA, Fayek H. Formulation and evaluation of betamethasone sodium phosphate loaded nanoparticles for ophthalmic delivery. J Clin Experiment Ophthalmol. 2013;4:1–11.

    Google Scholar 

  56. Hussain Z, Pandey M, Thu HE, et al. Hyaluronic acid functionalization improves dermal targeting of polymeric nanoparticles for management of burn wounds: in vitro, ex vivo and in vivo evaluations. Biomed Pharmacother. 2022;150: 112992.

    Article  CAS  PubMed  Google Scholar 

  57. Jangde R, Elhassan GO, Khute S, et al. Hesperidin-loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs. Pharmaceuticals. 2022;15(2):211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Desfrançois C, Auzély R, Texier I. Lipid nanoparticles and their hydrogel composites for drug delivery: a review. Pharmaceuticals (Basel). 2018;11(4):118.

    Article  PubMed  Google Scholar 

  59. Tahir N, Madni A, Correia A, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomed. 2019;14:4961–74.

    Article  CAS  Google Scholar 

  60. Yang P, Zhang L, Wang T, et al. Doxorubicin and edelfosine combo-loaded lipid-polymer hybrid nanoparticles for synergistic anticancer effect against drug-resistant osteosarcoma. Onco Targets and Therapy. 2020;13:8055–67.

    Article  CAS  Google Scholar 

  61. El-Habashy SE, Allam AN, El-Kamel AH. Ethylcellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. Int J Nanomed. 2016;11:2369–80.

    CAS  Google Scholar 

  62. Kumar S, Randhawa JK. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Adv. 2015;5:68743–50.

    Article  CAS  Google Scholar 

  63. Quirós-Fallas MI, Wilhelm-Romero K, Quesada-Mora S, et al. Curcumin hybrid lipid polymeric nanoparticles: antioxidant activity, immune cellular response, and cytotoxicity evaluation. Biomedicines. 2022;10(10):2431.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Laxmi RJ, Karthikeyan R, Babu PS, et al. Formulation and evaluation of antipsoriatic gel using natural excipients. Journal of Acute Disease. 2013;2(2):115–21.

    Article  Google Scholar 

  65. Gupta U, Singh V, Kumar V, Khajuria Y. Spectroscopic studies of cholesterol: Fourier transform infra-red and vibrational frequency analysis. Material Focus. 2014;3:1–7.

    Article  Google Scholar 

  66. Kaur K, Kumar P, Kush P. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Biomed Pharmacother. 2020;128: 110297.

    Article  CAS  PubMed  Google Scholar 

  67. Akhlaghi S, Rabbani S, Alavi S, et al. Green formulation of curcumin loaded lipid-based nanoparticles as a novel carrier for inhibition of post-angioplasty restenosis. Mater Sci Eng. C, Mater Biol Appl. 2019;105:110037.

  68. Fang JY, Fang CL, Liu CH, et al. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40.

    Article  CAS  PubMed  Google Scholar 

  69. Salehiabar M, Nosrati H, Javani E, et al. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int J Biol Macromol. 2018;115:83–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery-comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Delivery. 2017;24(1):1874–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2(8):1696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lukić M, Pantelić I, Savić SD. Towards optimal pH of the skin and topical formulations: from the current state of the art to tailored products. Cosmetics. 2021;8(3):69.

    Article  Google Scholar 

  73. Kaur N, Sharma K, Bedi N. Topical nanostructured lipid carrier based hydrogel of mometasone furoate for the treatment of psoriasis. Pharm Nanotechnol. 2018;6(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  74. Parvez S, Yadagiri G, Gedda MR, et al. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10:12243.

  75. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singh R, Koppu S, Perche PO, Feldman SR. The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications. Int J Mol Sci. 2021;22(23):12793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Woo YR, Cho DH, Park HJ. Molecular mechanisms and management of a cutaneous inflammatory disorder: psoriasis. Int J Mol Sci. 2017;18(12):2684.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Panonnummal R, Jayakumar R, Sabitha M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur J Pharm Sci. 2017;96:193–206.

    Article  CAS  PubMed  Google Scholar 

  79. Shakeel F, Baboota S, Ahuja A, et al. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;9(6):8.

    Article  Google Scholar 

  80. Vashisth I, Ahad A, Aqil M, Agarwal SP. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: effectiveness and mechanism of action. Asian J Pharm Sci. 2014;9(5):260–7.

    Article  Google Scholar 

  81. van der Fits L, Mourits S, Voerman JS, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182(9):5836–45.

    Article  Google Scholar 

  82. Wu L, Liu G, Wang W, et al. Cyclodextrin-modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int J Nanomed. 2020;15:2515–27.

    Article  CAS  Google Scholar 

  83. Fereig SA, El-Zaafarany GM, Arafa MG, et al. Tacrolimus-loaded chitosan nanoparticles for enhanced skin deposition and management of plaque psoriasis. Carbohyd Polym. 2021;268: 118238.

    Article  CAS  Google Scholar 

  84. Mao KL, Fan ZL, Yuan JD, et al. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf, B. 2017;160:704–14.

    Article  CAS  Google Scholar 

  85. Jain S, Mittal A, Jain KA. Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Curr Nanosci. 2011;7(4):524–30.

    Article  CAS  Google Scholar 

  86. De Rosa G, Mignogna C. The histopathology of psoriasis. Reumatismo. 2007;59(s1):46–8.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful and grateful to the Drug Delivery Research Laboratory (DDRL), Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India, for providing the platform to conduct and carry out this research work.

Funding

This work was financially supported by All India Council for Technical Education (AICTE)-PG Scholarship Scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally and approved the final version of the manuscript as submitted. TJ: experimental works, data processing, interpretation of data, statistical analysis, and manuscript writing; SD: figure design, statistical analysis, and interpretation; MKD: conception of the study, conceived, designed, and contributed to the formal analysis of the study, and reviewed/edited the manuscript.

Corresponding author

Correspondence to Malay K Das.

Ethics declarations

Ethics Approval

The Institutional Animal Ethical Committee (IAEC) (Regd. No.1576/GO/Re/S/11/CPCSEA Dated:30/10/2018) of Dibrugarh University, Dibrugarh, Assam, India, approved the experimental protocol with approval number IAEC/DU/209, dated:26/2/2022. All the animal experiments were conducted following the guidelines by the Institutional Animal Ethics Committee (IAEC) of Dibrugarh University, Dibrugarh, Assam, India (Approval No. IAEC/DU/209, Dated. 26/02/2022).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamatia, T., Das, S. & Das, M.K. Topical Delivery of Methoxsalen Co-loaded Curcumin Using Hybrid Nanocarrier-Based Polymeric Hydrogel for Synergistic Therapy in the Treatment of Psoriasis. J Pharm Innov 18, 2305–2324 (2023). https://doi.org/10.1007/s12247-023-09794-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09794-7

Keywords

Navigation