Skip to main content
Log in

Exploring Liposomal Systems for Gallic Acid and Tannic Acid Delivery: Potential Strategies to Address Inflammation and Infections in Pediatric Ventricular Assist Device Recipients

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Introduction

Pediatric heart failure imposes a significant health burden, necessitating effective interventions. Left ventricular assist devices (VADs) have emerged as crucial tools for circulatory support in advanced pediatric heart failure cases. However, VAD implantation brings forth the challenge of infections and inflammation, impacting patient outcomes. In this study, we explore the potential of two types pf pharmaceutical formulations, liposomal carriers loaded with gallic acid (GA) and tannic acid (TA) to address these issues.

Methods

Liposomes encapsulating GA and TA were prepared using thin-film hydration. Antimicrobial and antibiofilm efficacy against a dual bacterial system composed of Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) was assessed. The impact on lipopolysaccharide (LPS)-induced human aortic endothelial cells (HAEC) viability, intercellular adhesion molecule 1(ICAM-1) expression, monocyte attachment, and Interleukin 6 (IL-6) production were analyzed.

Results

Both TA- and GA-loaded liposomes demonstrated uniform shape with size around 250 nm. TA-loaded liposomes exhibited superior antibacterial and antibiofilm efficacy against the dual bacteria system compared to GA-loaded liposomes. GA-loaded liposomes significantly improved HAEC viability but TA-liposomes did not substantially enhance cell viability. Both liposomal interventions reduced LPS-induced IL-6 production, ICAM-1 expression, and monocyte attachment on HAECs.

Conclusion

This study highlights the multifaceted potential of GA and TA-liposomes in addressing infections and inflammation associated with pediatric VAD implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jefferies JL, Morales DL. Mechanical circulatory support in children: bridge to transplant versus recovery. Curr Heart Fail Rep. 2012;9(3):236–43.

    Article  PubMed  Google Scholar 

  2. Amdani S, Bradley SM, Rossano J, et al. Burden of pediatric heart failure in the United States. J Am Coll Cardiol. 2022;79(19):1917–28.

    Article  PubMed  Google Scholar 

  3. Miller JR, Eghtesady P. Ventricular assist device use in congenital heart disease with a comparison to heart transplant. J Comp Eff Res. 2014;3(5):533–46.

    Article  PubMed  Google Scholar 

  4. Thompson JH, Faulkner K, Lee C. Adverse events in patients with a left ventricular assist device: are patient-reported outcomes affected? Eur J Cardiovasc Nurs. 2022;21(3):254–60.

    Article  PubMed  Google Scholar 

  5. Şen S, Ülger Z, Bal ZŞ, Özbaran M. Infections in children with left ventricular assist device. Transplant Infect Dis. 2020;22(6):e13439.

    Article  Google Scholar 

  6. Auerbach SR, Richmond ME, Schumacher KR, et al. Infectious complications of ventricular assist device use in children in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs). J Heart Lung Transplant. 2018;37(1):46–53.

    Article  PubMed  Google Scholar 

  7. Cabrera AG, Khan MS, Morales DLS, et al. Infectious complications and outcomes in children supported with left ventricular assist devices. J Heart Lung Transplant. 2013;32(5):518–24.

    Article  PubMed  Google Scholar 

  8. Toba FA, Akashi H, Arrecubieta C, Lowy FD. Role of biofilm in Staphylococcus aureus and Staphylococcus epidermidis ventricular assist device driveline infections. J Thorac Cardiovasc Surg. 2011;141(5):1259–64.

    Article  PubMed  Google Scholar 

  9. Burki S, Adachi I. Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag. 2017;13:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ragusa R, Prontera C, Di Molfetta A, et al. Time-course of circulating cardiac and inflammatory biomarkers after Ventricular Assist Device implantation: comparison between pediatric and adult patients. Clin Chim Acta. 2018;486:88–93.

    Article  CAS  PubMed  Google Scholar 

  11. Byrnes JW, Bhutta AT, Rettiganti MR, et al. Steroid therapy attenuates acute phase reactant response among children on ventricular assist device support. Ann Thorac Surg. 2015;99(4):1392–8.

    Article  PubMed  Google Scholar 

  12. Radley G, Pieper IL, Ali S, et al. The inflammatory response to ventricular assist devices. Front Immunol. 2018;9:2651.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tang PC, Haft JW, Romano MA, et al. Right ventricular failure following left ventricular assist device implantation is associated with a preoperative pro-inflammatory response. J Cardiothorac Surg. 2019;14(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patra JK, Das G, Fraceto LF, et al. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ferreira M, Ogren M, Dias JNR, et al. Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules. 2021;26(7).

  16. Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferreira M, Pinto SN, Aires-da-Silva F, et al. Liposomes as a nanoplatform to improve the delivery of antibiotics into Staphylococcus aureus biofilms. Pharmaceutics. 2021;13(3).

  19. Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2).

  20. Wang DY, Van der Mei HC, Ren Y, Busscher L, Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 2020;7:872.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13(1):64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahamad N, Kar A, Mehta S, et al. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials. 2021;274:120875.

    Article  CAS  PubMed  Google Scholar 

  23. Choubey S, Goyal S, Varughese LR, et al. Probing gallic acid for its broad spectrum applications. Mini Rev Med Chem. 2018;18(15):1283–93.

    Article  CAS  PubMed  Google Scholar 

  24. Locatelli C, Filippin-Monteiro FB, Centa A, Creczinsky-Pasa TB. Antioxidant, antitumoral and anti-inflammatory activities of gallic acid. In: Li G, editor. Handbook on gallic acid: natural occurrences, antioxidant properties and health implications. Nova Publishers; 2013. p. 1–23.

    Google Scholar 

  25. Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—a minireview. Materials. 2020;13(14):3224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces. 2016;8(42):28511–21.

    Article  CAS  PubMed  Google Scholar 

  27. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):174–81.

    Article  CAS  PubMed  Google Scholar 

  28. Leuck AM. Left ventricular assist device driveline infections: recent advances and future goals. J Thorac Dis. 2015;7(12):2151–7.

    PubMed  PubMed Central  Google Scholar 

  29. Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of resident microbial communities in biofilm-related implant infections: recent insights and implications. Surg Infect (Larchmt). 2023;24(3):258–64.

    Article  PubMed  Google Scholar 

  30. Jo EK. Interplay between host and pathogen: immune defense and beyond. Exp Mol Med. 2019;51(12):1–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Guo, L., Ying, J. et al. Exploring Liposomal Systems for Gallic Acid and Tannic Acid Delivery: Potential Strategies to Address Inflammation and Infections in Pediatric Ventricular Assist Device Recipients. J Pharm Innov 18, 2170–2181 (2023). https://doi.org/10.1007/s12247-023-09782-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09782-x

Keywords

Navigation