Skip to main content
Log in

FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen Y Q, Huang M Y, Hu C Y, Zhu Y C, Han F, Miao C Y. A coarse-to-fine feature selection method for accurate detection of cerebral small vessel disease. In Proc. the 2016 International Joint Conference on Neural Networks, July 2016, pp.2609–2616. DOI: 10.1109/IJCNN.2016.7727526.

  2. Chen Y Q, Hu C Y, Hu B, Hu L S, Yu H, Miao C Y. Inferring cognitive wellness from motor patterns. IEEE Trans. Knowledge and Data Engineering, 2018, 30(12): 2340–2353. DOI: https://doi.org/10.1109/TKDE.2018.2820024.

    Article  Google Scholar 

  3. Hu C Y, Chen Y Q, Peng X H, Yu H, Gao C L, Hu L S. A novel feature incremental learning method for sensorbased activity recognition. IEEE Trans. Knowledge and Data Engineering, 2019, 31(6): 1038–1050. DOI: https://doi.org/10.1109/TKDE.2018.2855159.

    Article  Google Scholar 

  4. Dias D, Cunha J P S. Wearable health devices-vital sign monitoring, systems and technologies. Sensors, 2018, 18(8): 2414. DOI: https://doi.org/10.3390/s18082414.

    Article  Google Scholar 

  5. Schauss G, Arquilla K, Anderson A. ARGONAUT: An inclusive design process for wearable health monitoring systems. In Proc. the 2022 CHI Conference on Human Factors in Computing Systems, Apr. 2022, Article No. 392. DOI: https://doi.org/10.1145/3491102.3517590.

  6. Zendehdel G A, Kaur R, Chopra I, Stakhanova N, Scheme E. Automated security assessment framework for wearable BLE-enabled health monitoring devices. ACM Trans. Internet Technology, 2022, 22(1): Article No. 14. DOI: https://doi.org/10.1145/3448649.

  7. Konečný J, McMahan H B, Yu F X, Richtárik P, Suresh A T, Bacon D. Federated learning: Strategies for improving communication efficiency. arXiv: 1610.05492, 2016. https://arxiv.org/abs/1610.05492, Sept. 2023.

  8. Konečný J, McMahan H B, Ramage D, Richttárik P. Federated optimization: Distributed machine learning for ondevice intelligence. arXiv: 1610.02527, 2016. https://arxiv.org/abs/1610.02527, Sept. 2023.

  9. Nguyen D C, Pham Q V, Pathirana P N, Ding M, Seneviratne A, Lin Z H, Dobre O, Hwang W J. Federated learning for smart healthcare: A survey. ACM Computing Surveys, 2023, 55(3): Article No. 60. DOI: https://doi.org/10.1145/3501296.

  10. Ghods A. Creating interpretable data-driven approaches for remote health monitoring. In Proc. the 35th AAAI Conference on Artificial Intelligence, Feb. 2021, pp.15712–15713. DOI: 10.1609/aaai.v35i18.17853.

  11. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning, 2006, 63(1): 3–42. DOI: https://doi.org/10.1007/s10994-006-6226-1.

    Article  MATH  Google Scholar 

  12. Roebers C M, Röthlisberger M, Neuenschwander R, Cimeli P, Michel E, Jäger K. The relation between cognitive and motor performance and their relevance for children’s transition to school: A latent variable approach. Human Movement Science, 2014, 33: 284–297. DOI: https://doi.org/10.1016/j.humov.2013.08.011.

    Article  Google Scholar 

  13. Verlinden V J A, van der Geest J N, Hofman A, Ikram M A. Cognition and gait show a distinct pattern of association in the general population. Alzheimer’s & Dementia, 2014, 10(3): 328–335. DOI: https://doi.org/10.1016/j.jalz.2013.03.009.

    Article  Google Scholar 

  14. van der Fels I M J, te Wierike S C M, Hartman E, Elferink-Gemser M T, Smith J, Visscher C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. Journal of Science and Medicine in Sport, 2015, 18(6): 697–703. DOI: https://doi.org/10.1016/j.jsams.2014.09.007.

    Article  Google Scholar 

  15. Tian X B, Deng Z H, Ying W H, Choi K S, Wu D R, Qin B, Wang J, Shen H B, Wang S T. Deep multi-view feature learning for EEG-based epileptic seizure detection. IEEE Trans. Neural Systems and Rehabilitation Engineering, 2019, 27(10): 1962–1972. DOI: https://doi.org/10.1109/TNSRE.2019.2940485.

    Article  Google Scholar 

  16. Jarchi D, Peters A, Lo B, Kalliolia E, Di Giulio I, Limousin P, Day B L, Yang G Z. Assessment of the e-AR sensor for gait analysis of Parkinson’s disease patients. In Proc. the 12th International Conference on Wearable and Implantable Body Sensor Networks, Jun. 2015. DOI: 10.1109/BSN.2015.7299396.

  17. Tian F, Fan X M, Fan J J, Zhu Y C, Gao J, Wang D K, Bi X J, Wang H A. What can gestures tell?: Detecting motor impairment in early Parkinson’s from common touch gestural interactions. In Proc. the 2019 CHI Conference on Human Factors in Computing Systems, May 2019, Article No. 83. DOI: https://doi.org/10.1145/3290605.3300313.

  18. Alberdi A, Weakley A, Schmitter-Edgecombe M, Cook D J, Aztiria A, Basarab A, Barrenechea M. Smart homebased prediction of multidomain symptoms related to Alzheimer’s disease. IEEE Journal of Biomedical and Health Informatics, 2018, 22(6): 1720–1731. DOI: https://doi.org/10.1109/JBHI.2018.2798062.

    Article  Google Scholar 

  19. Sun F M, Zang W L, Gravina R, Fortino G, Li Y. Gaitbased identification for elderly users in wearable healthcare systems. Information Fusion, 2020, 53: 134–144. DOI: https://doi.org/10.1016/j.inffus.2019.06.023.

    Article  Google Scholar 

  20. Kos A, Umek A. Wearable sensor devices for prevention and rehabilitation in healthcare: Swimming exercise with real-time therapist feedback. IEEE Internet of Things Journal, 2019, 6(2): 1331–1341. DOI: https://doi.org/10.1109/JIOT.2018.2850664.

    Article  Google Scholar 

  21. EL Menshawy M, Benharref A, Serhani M. An automatic mobile-health based approach for EEG epileptic seizures detection. Expert Systems with Applications, 2015, 42(20): 7157–7174. DOI: https://doi.org/10.1016/j.eswa.2015.04.068.

    Article  Google Scholar 

  22. Hu C Y, Chen Y Q, Hu L S, Peng X H. A novel random forests based class incremental learning method for activity recognition. Pattern Recognition, 2018, 78: 277–290. DOI: https://doi.org/10.1016/j.patcog.2018.01.025.

    Article  Google Scholar 

  23. Qin Z, Zhang Y B, Meng S Y, Qin Z G, Choo K K R. Imaging and fusing time series for wearable sensor-based human activity recognition. Information Fusion, 2020, 53: 80–87. DOI: https://doi.org/10.1016/j.inffus.2019.06.014.

    Article  Google Scholar 

  24. Guo H D, Chen L, Peng L Y, Chen G C. Wearable sensor based multimodal human activity recognition exploiting the diversity of classifier ensemble. In Proc. the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Sept. 2016, pp.1112–1123. DOI: 10.1145/2971648.2971708.

  25. Xia Q X, Wada A, Korpela J, Maekawa T, Namioka Y. Unsupervised factory activity recognition with wearable sensors using process instruction information. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): Article No. 60. DOI: 10.1145/3328931.

  26. McMahan H B, Moore E, Ramage D, Arcas B A Y. Federated learning of deep networks using model averaging. arXiv: 1602.05629, 2016. https://arxiv.org/abs/1602.05629v1, Sept. 2023.

  27. Li Z, Bilal M, Xu X L, Jiang J L, Cui Y. Federated learning- based cross-enterprise recommendation with graph neural networks. IEEE Trans. Industrial Informatics, 2023, 19(1): 673–682. DOI: https://doi.org/10.1109/TII.2022.3203395.

    Article  Google Scholar 

  28. Chen H, Huang S C, Zhang D Y, Xiao M, Skoglund M, Poor H V. Federated learning over wireless IoT networks with optimized communication and resources. IEEE Internet of Things Journal, 2022, 9(17): 16592–16605. DOI: https://doi.org/10.1109/JIOT.2022.3151193.

    Article  Google Scholar 

  29. Yang Q, Liu Y, Chen T J, Tong Y X. Federated machine learning: Concept and applications. ACM Trans. Intelligent Systems and Technology, 2019, 10(2): Article No. 12. DOI: https://doi.org/10.1145/3298981.

  30. McMahan H B, Moore E, Ramage D, Hampson S, Arcas B A Y. Communication-efficient learning of deep networks from decentralized data. arXiv: 1602.05629, 2016. https://arxiv.org/abs/1602.05629, Sept. 2023.

  31. Smith V, Chiang C K, Sanjabi M, Talwalkar A. Federated multi-task learning. In Proc. the 31st International Conference on Neural Information Processing Systems, Dec. 2017, pp.4427–4437. DOI: 10.5555/3294996.3295196.

  32. Liu Y, Liu Y T, Liu Z J, Liang Y X, Meng C S, Zhang J B, Zheng Y. Federated forest. IEEE Trans. Big Data, 2022, 8(3): 843–854. DOI: https://doi.org/10.1109/TBDATA.2020.2992755.

    Article  Google Scholar 

  33. Cheng K W, Fan T, Jin Y L, Liu Y, Chen T J, Papadopoulos D, Yang Q. SecureBoost: A lossless federated learning framework. IEEE Intelligent Systems, 2021, 36(6): 87–98. DOI: https://doi.org/10.1109/MIS.2021.3082561.

    Article  Google Scholar 

  34. Chen Y Q, Qin X, Wang J D, Yu C H, Gao W. Fed-Health: A federated transfer learning framework for wearable healthcare. IEEE Intelligent Systems, 2020, 35(4): 83–93. DOI: https://doi.org/10.1109/MIS.2020.2988604.

    Article  Google Scholar 

  35. Liu Y, Kang Y, Xing C P, Chen T J, Yang Q. A secure federated transfer learning framework. IEEE Intelligent Systems, 2020, 35(4): 70–82. DOI: https://doi.org/10.1109/MIS.2020.2988525.

    Article  Google Scholar 

  36. Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In Proc. the 12th International Conference on Computer Vision Workshops, Sept. 27–Oct. 4, 2009, pp.1393–1400. DOI: 10.1109/ICCVW.2009.5457447.

  37. Reiss A, Stricker D. Introducing a new benchmarked dataset for activity monitoring. In Proc. the 16th International Symposium on Wearable Computers, Jun. 2012, pp.108–109. DOI: 10.1109/ISWC.2012.13.

  38. Sztyler T, Stuckenschmidt H. On-body localization of wearable devices: An investigation of position-aware activity recognition. In Proc. the 2016 IEEE International Conference on Pervasive Computing and Communications, Mar. 2016. DOI: https://doi.org/10.1109/PERCOM.2016.7456521.

  39. Chavarriaga R, Sagha H, Calatroni A, Digumarti S T, Tröster, G, del R. Millán J, Roggen D. The Opportunity challenge: A benchmark database for on-body sensorbased activity recognition. Pattern Recognition Letters, 2013, 34(15): 2033–2042. DOI: https://doi.org/10.1016/j.patrec.2012.12.014.

    Article  Google Scholar 

  40. Reyes-Ortiz J, Anguita D, Ghio A, Oneto L, Parra X. Human activity recognition using smartphones. UCI Machine Learning Repository, 2012. DOI: https://doi.org/10.24432/C54S4K.

  41. Barshan B, Yüksek M C. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. The Computer Journal, 2014, 57(11): 1649–1667. DOI: https://doi.org/10.1093/comjnl/bxt075.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Chun-Yu Hu and Li-Sha Hu are both responsible for paper writing and algorithm design and implementation.

Supplementary Information

ESM 1

(PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, CY., Hu, LS., Yuan, L. et al. FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring. J. Comput. Sci. Technol. 38, 970–984 (2023). https://doi.org/10.1007/s11390-023-3009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-023-3009-0

Keywords

Navigation