Skip to main content
Log in

Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18–599 (8–11 TBN) and 3237 (0–1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13–18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data and materials are available on request from the authors.

Abbreviations

TBN :

Tassel branch number

ICIM :

Inclusive composite interval mapping

QTL :

Quantitative trait locus

IM :

Inflorescence meristem

SPM :

Spikelet pair meristems

SM :

Spikelet meristems

PVE :

Phenotypic variation explained

BSA :

Bulked sample analysis

NGS :

Next-generation sequencing

RIL :

Recombinant inbred line

NILs :

Near-isogenic lines

GWAS :

Genome-wide association studies

SNP :

Single nucleotide polymorphism

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Berke TG, Rocheford TR (1999) Quantitative trait loci for tassel traits in maize. Crop Sci 39(5):1439–1443

    Article  Google Scholar 

  • Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132(6):1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) Ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18(3):574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7(11):e1002383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2(1):1–8

    Article  Google Scholar 

  • Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genom 15(433):1471–2164

    Google Scholar 

  • Chen Z, Yang C, Tang D, Zhang L, Zhang L, Qu J, Liu J (2017) Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric 16(7):1432–1442

    Article  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111(52):18775–18780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Wang X, Yang Q, Wang Y, Zhang Y, Xi Z, Li B (2018) Major quantitative trait loci mapping for tassel branch number and construction of qTBN5 near-isogenic lines in maize (Zea mays L.). Acta Agronomica Sinica 44(8):1127–1135

    Article  Google Scholar 

  • Duvick DN, Cassman KG (1999) Post–green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci 39(6):1622–1630

    Article  Google Scholar 

  • Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464(7291):1039–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage JL, White MR, Edwards JW, Kaeppler S, de Leon N (2018) Selection signatures underlying dramatic male inflorescence transformation during modern hybrid maize breeding. Genetics 210(3):1125–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, RitterMK DJF, Pè ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432(7017):630–635

    Article  CAS  PubMed  Google Scholar 

  • Guan H, Chen X, Wang K, Liu X, Zhang D, Li Y, Li Y (2022) Genetic variation in ZmPAT7 contributes to tassel branch number in maize. Int J Mol Sci 23(5):2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Liu C, Zhao Y, Zeng B, Zhao H, Jiang Y, Song W, Lai J (2012) Characterization, fine mapping and expression profiling of Ragged leaves1 in maize. Theor Appl Genet 125(6):1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128(7):1329–1342

    Article  PubMed  Google Scholar 

  • Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48(7):785–791

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815

    Article  CAS  PubMed  Google Scholar 

  • Katta MA, Khan AW, Doddamani D, Thudi M, Varshney RK (2015) NGS-QCbox and raspberry for parallel, automated and rapid quality control analysis of large-scale next generation sequencing (Illumina) data. PLoS ONE 10(10):e0139868

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1994) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

  • Kosugi S, Natsume S, Yoshida K, MacLean D, Cano L, Kamoun S, Terauchi R (2013) Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PLoS ONE 8(10):e75402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK (2020) Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J 18(4):992–1003

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJ, Johnson RR (1978) Leaf angle, tassel morphology, and the performance of maize hybrids1. Crop Sci 18(3):499–502

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz RJ, Soller M, Beckmann JS (1987) Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor Appl Genet 73(4):556–562

    Article  CAS  PubMed  Google Scholar 

  • Lemmon ZH, Doebley JF (2014) Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL. Genetics 198(1):345–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Meng D, Yu H, Zhang K, Zhu K, Lv J, Cheng Z, Weng J, Du W, Lv X, Li F (2019) Fine mapping and identification of ub4 as a candidate gene associated with tassel branch number in maize (Zea mays L.). Genet Resour Crop Evol 66:1557–1571

    Article  CAS  Google Scholar 

  • Li Y, Dong Y, Niu S, Cui D, Wang Y, Liu Y, Wei M, Li XV (2008) Identification of agronomically favorable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the F 2: 3 population in popcorn. Mol Breed 21:1–14

    Article  CAS  Google Scholar 

  • Liu J, Qu J, Yang C, Tang D, Li J, Lan H, Rong T (2015) Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genom 16(1):1–9

    Article  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    Article  PubMed  Google Scholar 

  • Liu R, Gong J, Xiao X, Xiao X, Zhang Z, Li J, Liu A, Lu Q, Shang H, Shi Y, Ge Q, Iqbal MS, Deng X, Li S, Pan J, Duan L, Zhang Q, Jiang X, Zou X, Hafeez A, Chen Q, Geng H, Gong W, Yuan Y (2018) GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci 9:1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hao L, Kou S, Su E, Zhou Y, Wang R, Mohamed A, Gao C, Zhang DF, Li Y, Li C, Song Y, Shi Y, Wang T, Li Y (2019) High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize. Mol Breed 39:1–14

    Article  Google Scholar 

  • McSteen P, Hake S (2001) Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128:2881–2891

    Article  CAS  PubMed  Google Scholar 

  • McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) Barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144(2):1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88(21):9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73× Mo17 population of maize. Crop Sci 42(6):1902–1909

    Article  CAS  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15(8):927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23(2):550–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Tian S, Zhang W, Dong X, Ma C, Wang Y, Yan J, Yue B (2021) QDtbn1, an F-box gene affecting maize tassel branch number by a dominant model. Plant Biotechnol J 19(6):1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112

    Article  PubMed  Google Scholar 

  • Ritter MK, Padilla CM, Schmidt RJ (2002) The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot 89(2):203–210

    Article  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81(24):8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441(7090):227–230

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016a) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14(11):2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Kumar CVS, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14(5):1183–94

    Article  CAS  PubMed  Google Scholar 

  • Skirpan A, Wu X, McSteen P (2008) Genetic and physical interaction suggest that BARREN STALK1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. Plant J 55(5):787–797

    Article  CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15(20):2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Upadyayula N, Wassom J, Bohn MO, Rocheford TR (2006) Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theor Appl Genet 113(8):1395–1407

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES IV, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436(7054):1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lin Z, Li X, Zhao Y, Zhao B, Wu G, Ma X, Wang H, Xie Y, Li Q, Song G, Kong D, Zheng Z, Wei H, Shen R, Wu H, Chen C, Meng Z, Wang T, Li Y, Li X, Chen Y, Lai J, Hufford MB, Ross-Ibarra J, He H, Wang H (2020) Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52(6):565–571

    Article  PubMed  Google Scholar 

  • Wang D, Li Y, Wang Y, Liu C, Liu Z, Peng B, Tan W, Zhang Y, Sun B, Shi Y, Song Y, Wang T, Li Y (2011) Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize (Zea mays). Chin Bull Bot 46(1):11–20

    Article  CAS  Google Scholar 

  • Wang Y, Bao J, Wei X, Wu S, Fang C, Li Z, Qi Y, Gao Y, Dong Z, Wan X (2022) Genetic structure and molecular mechanisms underlying the formation of tassel, Anther, and pollen in the male inflorescence of maize (Zea Mays L.). Cells 11(11):1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Genetic Chen J, Guan Z, Zhang X, Zhang Y, Ma L, Yao Y, Peng H, Zhang Q, Zhang B, Liu P, Zou C, Shen Y, Ge F, Pan G (2019) Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize. Mol Genet Genom 294:1421–1440

    Article  CAS  Google Scholar 

  • Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y (2014) Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet 127(3):621–631

    Article  PubMed  Google Scholar 

  • Wu X, Li Y, Shi Y, Song Y, Zhang D, Li CH, Buckler ES, Li Y, Zhang Z, Wang T (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14(7):1551–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214(2):852–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLOS Genet 10(9):e1004573

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang X, Pan Q, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y, Wang G, Li L (2019) QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12(3):426–437

    Article  PubMed  Google Scholar 

  • Zhang X, Wang W, Guo N, Zhang Y, Bu Y, Zhao J, Xing H (2018) Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19(1):226

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Shenzhen Huada Gene Technology Co., Ltd (https://www.genomics.cn/) for their whole-genome resequencing. We would also like to thank MogoEdit (http://www.mogoedit.com/) for their English language editing.

Funding

This work was supported by the National Basic Research Program of China (the “973” project, grant number: 2014CB138203), the National Natural Science Foundation of China (grant number: 31101161), the Sichuan Science and Technology Program (grant number: 2022NSFSC0151), and the Double-Support Plan of Sichuan Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

J. L. and T. R. conceived and designed the experiments. J. N., Y. C., Z. C., D. T., H. W., W. D., J. Y., X. W., R. B., Z. L., and P. M. conducted phenotyping measurement in the field trial and performed the experiments. J. N., Y. C., and Z. C. analyzed the data. J. N. and J. L. wrote and revised the manuscript.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Ethics approval

All the authors have read and abided by the statement of ethical standards for manuscripts submitted to Molecular Breeding.

Consent for publication

All the authors approved the manuscript published in Molecular Breeding.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., You, C., Chen, Z. et al. Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations. Mol Breeding 43, 88 (2023). https://doi.org/10.1007/s11032-023-01431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01431-y

Keywords

Navigation