Skip to main content
Log in

Singlet Oxygen Generation by an Indotricarbocyanine Dye with Bulky Substituents

  • Published:
Journal of Applied Spectroscopy Aims and scope

A study was carried out on the spectral-luminescence and phosphorescence properties of an indotricarbocyanine dye with an ortho-phenylene bridge in the conjugation chain as well as two 300-Da polyethylene glycol (PEG) substituents (PD1) and its analog without PEG (PD2). The presence of the bulky PEG300 substituents in the dye structures was shown to alter the efficiency of singlet oxygen generation. The yield of singlet oxygen in ethanol for both dyes in the concentration range from 5∙10–8 to 10–5 M has a constant value γΔ = 0.031 ± 0.005 for PD1 and 0.050 ± 0.008 for PD2. An increasing value of γΔ from 0.022 ± 0.004 when Cdye = 2.6·10–7 M to 0.104 ± 0.016 when Cdye = 5.8·10–5 M was found in the concentration range from 10–7 to 10–5 M in low-polarity chloroform for PD2, whereas the quantum yield for PD1 with bulky substituents is invariant in this concentration range (0.032 ± 0.003). The increase in the singlet oxygen formation quantum yield with increasing concentration of PD2 in low-polarity chloroform is attributed to an increase in the fraction of contact ion pairs in solution and a heavy atom effect related to the Br anion. The presence of two PEG300 chains in the structure of the cationic indotricarbocyanine dye (~770 Da) prevents the counterion from moving away from the cation of dye PD1 in low-polarity chloroform. Furthermore, the dye molecules are in the form of contact ion pairs at any concentration and it is hence difficult for the chromophore to interact with dissolved oxygen due to steric hindrance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Voropai and M. P. Samtsov, J. Appl. Spectrosc., 65, No. 2, 369–377 (1995); doi: https://doi.org/10.1007/BF02606495.

  2. M. P. Samtsov, S. A. Tikhomirov, L. S. Lyashenka, D. S. Tarasau, O. V. Buganov, V. A. Galievsky, A. S. Stasheuski, and E. S. Voropay, J. Appl. Spectrosc., 80, No. 2, 170–175 (2013).

    Article  ADS  Google Scholar 

  3. M. P. Samtsov, E. S. Voropai, K. N. Kaplevsky, D. G. Melnikau, L. S. Lyashenko, and Yu. P. Istomin, J. Appl. Spectrosc., 76, No. 4, 576–582 (2009).

    Article  Google Scholar 

  4. A. A. Ishchenko and A. T. Syniugina, Theor. Exp. Chem., 58, 373–401 (2023); doi: https://doi.org/10.1007/s11237023097549.

    Article  Google Scholar 

  5. D. M. Dereje, C. Pontremoli, M. J. Moran Plata, S. Visentin, and N. Barbero, Photochem. Photobiol. Sci., 21, 397–419 (2022); doi: https://doi.org/10.1007/s43630022001756.

  6. N. Lange, W. Szlasa, J. Saczko, and A. Chwilkowska, Pharmaceutics, 13, 818 (2021); doi: https://doi.org/10.3390/pharmaceutics13060818.

    Article  Google Scholar 

  7. S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, and J. Kulbacka, Biomed. Pharm., 106, 1098–1107 (2018); doi: https://doi.org/10.1016/j.biopha.2018.07.049.

    Article  Google Scholar 

  8. E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. A. Lugovskii, and E. N. Aleksandrova, J. Appl. Spectrosc., 71, 180–186 (2004).

    Article  ADS  Google Scholar 

  9. M. P. Samtsov, E. S. Voropai, D. G. Mel'nikov, L. S. Lyashenko, A. A. Lugovskii, and Yu. P. Istomin, J. Appl. Spectrosc., 77, No. 3, 406–412 (2010).

    Article  ADS  Google Scholar 

  10. A. A. Lugovski, M. P. Samtsov, K. N. Kaplevsky, D. S. Tarasau, E. S. Voropay, P. T. Petrov, and Y. P. Istomin, J. Photochem. Photobiol. A: Chem., 316, 31–36 (2016); doi: https://doi.org/10.1016/j.jphotochem.2015.10.008.

  11. M. P. Samtsov, D. S. Tarasov, A. S. Goryashchenko, N. I. Kazachkina, V. V. Zherdeva, A. P. Savitskii, and I. G. Meerovich, Zh. Bel. Gos. Univ., Fizika, No. 1, 33–40 (2018).

  12. M. P. Samtsov, D. S. Tarasov, E. S. Voropai, L. S. Lyashenko, P. T. Petrov, V. M. Nasek, A. O. Savin, and R. D. Zil'berman, Zh. Bel. Gos. Univ., Fizika, No. 1, 19–26 (2019).

  13. N. B. Bel'ko, M. P. Samtsov, and D. S. Tarasov, Zh. Bel. Gos. Univ., Fizika, No. 3, 17–23 (2020).

  14. D. S. Tarasov, M. P. Samtsov, and N. N. Krasnoperov, Zh. Bel. Gos. Univ., Fizika, No. 2, 4–11 (2022)

  15. A. J. Gordon and R. A. Ford, The Chemist's Companion, Wiley, New York (1972).

    Google Scholar 

  16. A. S. Stashevskii, V. A. Galievskii, and B. M. Dzagarov, Pribory Metody Izmerenii, 2, No. 1, 25 (2011).

    Google Scholar 

  17. K. N. Kaplevskii, M. P. Samtsov, A. S. Stashevskii, V. A. Galievskii, D. S. Tarasov, and E. S. Voropai, Vestn. Bel. Gos. Univ., Ser. 1: Fiz. Mat. Inform., No. 2, 7–11 (2012).

  18. P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, I. Nikolajsen, E. Skovsen, M. Jørgensen, K. V. Mikkelsen, and P. R. Ogilby, J. Am. Chem. Soc., 127, 255–269 (2005); doi: https://doi.org/10.1021/ja0452020.

    Article  Google Scholar 

  19. M. P. Samtsov, E. S. Voropai, K. N. Kaplevskii, and D. G. Mel'nikov, J. Appl. Spectrosc., 75, No. 5, 692–699 (2008).

    Article  ADS  Google Scholar 

  20. M. P. Samtsov, D. S. Tarasau, A. S. Stashevskii, K. N. Kaplevsky, and E. S. Voropay, J. Appl. Spectrosc., 81, No. 1, 214–221 (2014).

    Article  ADS  Google Scholar 

  21. E. S. Voropai, M. P. Samtsov, and K. N. Kaplevskii, J. Appl. Spectrosc., 70, 721–728 (2003).

    Article  ADS  Google Scholar 

  22. T. Welton and C. Reichadt, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons, Weinheim (2011).

    Google Scholar 

  23. I. R. Gould, R. H. Young, R. E. Moody, and S. J. Farid, J. Phys. Chem., 95, No. 5, 2068–2080 (1991).

    Article  Google Scholar 

  24. X. Yang, Z. Zaitsev, B. Sauerwein, S. Murphy, and G. B. Schuster, J. Am. Chem. Soc., 114, No. 2, 793–794 (1992); doi: https://doi.org/10.1021/ja00028a075.

    Article  Google Scholar 

  25. Y. Marcus and G. Hefter, Chem. Rev., 106, No. 11, 4585–4621 (2006); doi: https://doi.org/10.1021/cr040087x.

    Article  Google Scholar 

  26. A. S. Tatikolov, L. A. Shvedova, N. A. Derevyanko, A. A. Ishchenko, and V. A. Kuzmin, Chem. Phys. Lett., 190, Nos. 3–4, 291–297 (1992); doi: https://doi.org/10.1016/00092614(92)853417.

    Article  ADS  Google Scholar 

  27. A. V. Odinokov, M. V. Bazilevskii, N. Kh. Petrov, A. K. Chibisov, and M. V. Alfimov, High Energy Chem., 44, 376–382 (2010); doi: https://doi.org/10.2234/S0018143910050048.

  28. V. A. Kuz'min, A. P. Darmanyan, V. I. Shirokova, M. A. Al'perovich, and I. N. Levkoev, Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 581–586 (1978).

  29. N. Derkaoui, S. Said, Y. Grohens, R. Olier, and M. Privat, J. Colloid Interface Sci., 305, 330–338 (2007); doi: https://doi.org/10.1016/j.jcis.2006.10.008.

  30. B. Heymann and H. Grubmüller, Chem. Phys. Lett., 307, Nos. 5–6, 425–432 (1999), doi: 1016/S00092614(99)00531X.

  31. Y. Hu, J. Xie, Y. W. Tong, and C. H. Wang, J. Control. Rel., 118, No. 1, 7–17 (2007); doi: https://doi.org/10.1016/j.jconrel.2006.11.028.

  32. M. T. Peracchia, C. Vanthier, C. Passirani, P. Couvreur, and D. Labarre, Life Sci., 61, No. 7, 749–761 (1997), doi: https://doi.org/10.1016/S00243205(97)005390.

    Article  Google Scholar 

  33. S. D. Li and J. Huang, J. Control. Rel., 145, No. 3, 178–181 (2010); doi: 10.1016%2Fj.jconrel.2010.03.016.

  34. Y. Gun, H. Yuan, W. L. Rice, A. T. Kumar, C. J. Goergen, K. Jokivarsi, and L. Josephson, J. Am. Chem. Soc., 134, No. 47, 19338–19341 (2012); doi: https://doi.org/10.1021/ja309085b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 5, pp. 738–746, September–October, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samtsov, M.P., Tarasov, D.S. & Voropay, E.S. Singlet Oxygen Generation by an Indotricarbocyanine Dye with Bulky Substituents. J Appl Spectrosc 90, 1029–1036 (2023). https://doi.org/10.1007/s10812-023-01628-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01628-1

Keywords

Navigation