Skip to main content
Log in

Exploring dynamics of plant–herbivore interactions: bifurcation analysis and chaos control with Holling type-II functional response

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this study, we examine the plant–herbivore discrete model of apple twig borer and grape vine interaction, with a particular emphasis on the extended weak-predator response to Holling type-II response. We explore the dynamical and qualitative analysis of this model and investigate the conditions for stability and bifurcation. Our study demonstrates the presence of the Neimark–Sacker bifurcation at the interior equilibrium and the transcritical bifurcation at the trivial equilibrium, both of which have biological feasibility. To avoid unpredictable outcomes due to bifurcation, we employ chaos control methods. Furthermore, to support our theoretical and mathematical findings, we develop numerical simulation techniques with examples. In summary, our research enhances the comprehension of the dynamics pertaining to interactions between plants and herbivores in the context of discrete-time population models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript lacks any accompanying data.

References

  • Abbott KC, Dwyer G (2007) Food limitation and insect outbreaks: complex dynamics in plant–herbivore models. J Anim Ecol 76:1004–1014

    Article  Google Scholar 

  • Allen LJS, Strauss MJ, Thorvilson HG, Lipe WN (1991) A preliminary mathematical model of the apple twig borer (Coleoptera: Bostrichidae) and grapes on the Texas High Plains. Ecol Model 58:369–382

    Article  Google Scholar 

  • Allen LJS, Hannigan MK, Strauss MJ (1993) Mathematical analysis of a model for a plant-herbivore system. Bull Math Biol 55(4):847–864

    Article  Google Scholar 

  • Beiriger R, Thorvilson H, Lipe W, Rummel D (1988) The life history of the apple twig borer. Proc Texas Grape Growers Ass 12:101–106

    Google Scholar 

  • Beiriger R, Thorvilson H, Lipe W, Rummel D (1989) Determination of adult apple twig borer sex based on a comparison of internal and external morphology. Southwest Entomol 14:199–203

    Google Scholar 

  • Beiriger R (1988) The bionomics of Amphicerus bicaudatus (Say), the apple twig borer, on the Texas High Plains. MSc Thesis, Texas Tech University, Lubbock, Texas

  • Buckley YM, Rees M, Sheppard AW, Smyth MJ (2005) Stable coexistence of an invasive plant and biocontrol agent: a parameterized coupled plant–herbivore model. J Appl Ecol 42:70–79

    Article  Google Scholar 

  • Castillo-Chavez C, Feng Z, Huang W (2012) Global dynamics of a plant-herbivore model with toxin-determined functional response. SIAM J Appl Math 72(4):1002–1020

    Article  MathSciNet  Google Scholar 

  • Cui Q, Zhang Q, Qiu Z, Hu Z (2016) Complex dynamics of a discrete-time predator-prey system with Holling IV functional response. Chaos Soliton Fract 87:158–171

    Article  MathSciNet  Google Scholar 

  • Din Q (2015) Global behavior of a plant-herbivore model. Adv Differ Equ 2015:119

    Article  MathSciNet  Google Scholar 

  • Din Q (2017) Complexity and chaos control in a discrete-time prey-predator model. Commun Nonlinear Sci Numer Simul 49:113–134

    Article  MathSciNet  Google Scholar 

  • Din Q, Shabbir MS, Khan MA, Ahmad K (2019) Bifurcation analysis and chaos control for a plant–herbivore model with weak predator functional response. J Biol Dyn 13(1):481–501

    Article  MathSciNet  Google Scholar 

  • Din Q, Shabbir MS, Khan MA (2022) A cubic autocatalator chemical reaction model with limit cycle analysis and consistency preserving discretization. Match 87:441–462

    Article  Google Scholar 

  • Din Q, Saleem N, Shabbir MS (2020) A class of discrete predator-prey interaction with bifurcation analysis and chaos control. Math Model Nat Phenomena

  • Edelstein-Keshet L (1986) Mathematical theory for plant-herbivore systems. J Math Biol 24:25–58

    Article  MathSciNet  Google Scholar 

  • Feng Z, DeAngelis DL (2018) Mathematical models of plant-herbivore interactions. CRC Press, Boca Raton

    Google Scholar 

  • Feng Z, Qiu Z, Liu R, DeAngelis DL (2011) Dynamics of a plant-herbivore-predator system with plant-toxicity. Math Biosci 229(2):190–204

    Article  MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  • Gutierrez AP, Williams DW, Kido H (1985) A model of grape growth and development: the mathematical structure and biological considerations. Crop Sci 25:721–728

    Article  Google Scholar 

  • Jothi SS, Gunasekaran M (2015) Chaos and bifurcation analysis of plant-herbivore system with intra-specific competitions. Int J Adv Res 3(8):1359–1363

    Google Scholar 

  • Kang Y, Armbruster D, Kuang Y (2008) Dynamics of a plant–herbivore model. J Biol Dyn 2(2):89–101

    Article  MathSciNet  Google Scholar 

  • Kartal S (2016) Dynamics of a plant-herbivore model with differential-difference equations. Cogent Math 3(1):1136198

    Article  MathSciNet  Google Scholar 

  • Khan AQ, Ma J, Xiao D (2016) Bifurcations of a two-dimensional discrete time plant–herbivore system. Commun Nonlinear Sci Numer Simul 39:185–198

    Article  MathSciNet  Google Scholar 

  • Kuang Y, Huisman J, Elser JJ (2004) Stoichiometric plant-herbivore models and their interpretation. Math Biosci Eng 1(2):215–222

    Article  MathSciNet  Google Scholar 

  • Kulenović MRS, Merino O (2002) Discrete dynamical systems and difference equations with mathematica. Chapman and Hall/CRC, New York

    Book  Google Scholar 

  • Kuznetsov YA (1997) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  • Li Y, Feng Z, Swihart R, Bryant J, Huntley H (2006) Modeling plant toxicity on plant–herbivore dynamics. J Dyn Differ Equ 18(4):1021–1024

    Article  MathSciNet  Google Scholar 

  • Liebscher S (2015) Bifurcation without parameters, vol 526. Springer, Berlin

    Book  Google Scholar 

  • Liu X, Xiao D (2007) Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Soliton Fract 32:80–94

    Article  MathSciNet  Google Scholar 

  • Liu R, Feng Z, Zhu H, DeAngelis DL (2008) Bifurcation analysis of a plant–herbivore model with toxin–determined functional response. J Differ Equ 245:442–467

    Article  MathSciNet  Google Scholar 

  • Loskutov AY (2001) Chaos and control in dynamical systems. Comput Math Model 12:314–352

    Article  MathSciNet  Google Scholar 

  • Luo XS, Chen GR, Wang BH, Fang JQ (2003) Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fract 18(4):775–783

    Article  Google Scholar 

  • Lynch S (2007) Dynamical systems with applications using mathematica. Birkhauser, Boston

    Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Letters 64(11):1196–1199

    Article  MathSciNet  Google Scholar 

  • Pakes AG, Mailer RA (1990) Mathematical ecology of plant species competition. Cambridge University Press, Cambridge

    Google Scholar 

  • Poincaré H (1885) Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Bulletin Astronomique, Observatoire De Paris 2(1):109–118

    Article  MathSciNet  Google Scholar 

  • Robinson C (1999) Dynamical systems: stability (symbolic dynamics and chaos). CRC Press, Boca Raton

    Google Scholar 

  • Romeiras FJ, Grebogi C, Ott E, Dayawansa WP (1992) Controlling chaotic dynamical systems. Physica D 58:165–192

    Article  MathSciNet  Google Scholar 

  • Schöll E, Schuster HG (2007) Handbook of chaos control. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Shabbir MS et al (2019) A dynamically consistent nonstandard finite difference scheme for a predator-prey model. Adv Difference Equ 2019:381

    Article  MathSciNet  Google Scholar 

  • Shabbir MS, Din Q, Alabdan R, Tassaddiq A, Ahmad K (2020a) Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism. IEEE Access 8:100226–100240

    Article  Google Scholar 

  • Shabbir MS, Din Q, Ahmad K, Tassaddiq A, Soori AH, Khan MA (2020b) Stability, bifurcation and chaos control of a novel discrete-time model involving Allee effect and cannibalism. Adv Differ Equ 2020:379

    Article  MathSciNet  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Adison-Wesley, Reading

  • Sui G, Fan M, Loladze I, Kuang Y (2007) The dynamics of a stoichiometric plant–herbivore model and its discrete analog. Math Biosci Eng 4(1):29–46

    Article  MathSciNet  Google Scholar 

  • Tassaddiq A, Shabbir MS, Din Q, Ahmad K (2020) A ratio-dependent nonlinear predator-prey model with certain dynamical results. IEEE Access 2020:1

    Google Scholar 

  • Tassaddiq A, Shabbir MS, Din Q (2022) Discretization, bifurcation and control for a class of predator-prey interaction. Fractal and Fractional 6(1):31

    Article  Google Scholar 

  • Tunç C (2010) A note on boundedness of solutions to a class of non-autonomous differential equations of second order. Applicable Analysis and Discrete Mathematics pp. 361–372

  • Tunç C (2013) Stability to vector Lienard equation with constant deviating argument. Nonlinear Dyn 73(3):1245–1251

    Article  MathSciNet  Google Scholar 

  • Tunç C, Tunç O (2019) Qualitative analysis for a variable delay system of differential equations of second order. J Taibah Univ Sci 13(1):468–477

    Article  Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    Google Scholar 

  • Yuan LG, Yang QG (2015) Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl Math Model 39(8):2345–2362

    Article  MathSciNet  Google Scholar 

  • Zhao Y, Feng Z, Zheng Y, Cen X (2015) Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response. J Differ Equ 258(8):2847–2872

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajjad Shabbir.

Ethics declarations

Conflict of interest

The authors hereby state that there exists no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, M.S., Din, Q., De la Sen, M. et al. Exploring dynamics of plant–herbivore interactions: bifurcation analysis and chaos control with Holling type-II functional response. J. Math. Biol. 88, 8 (2024). https://doi.org/10.1007/s00285-023-02020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-02020-5

Keywords

Mathematics Subject Classification

Navigation