Skip to main content

Advertisement

Log in

Coenzyme Q10 Protects Against Hyperlipidemia-Induced Osteoporosis by Improving Mitochondrial Function via Modulating miR-130b-3p/PGC-1α Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In hyperlipidemia-induced osteoporosis, bone marrow mesenchymal stem cells (BMSCs) differentiate into more adipocytes than osteoblasts, leading to decreased bone formation. It is vital to elucidate the effects of hyperlipidemia on bone metabolism and seek new agents that regulate adipocyte-osteoblast lineage allocation. CoQ10, a rate-limiting coenzyme of the mitochondrial respiratory chain, has been reported to decrease oxidative stress and lipid peroxidation by functioning as a mitochondrial antioxidant. However, its effect on hyperlipidemia-induced osteoporosis remains unknown. Here, we analyzed the therapeutic mechanisms of CoQ10 on hyperlipidemia-induced osteoporosis by using high-fat diet (HFD)-treated ApoE−/− mice or oxidized low-density lipoprotein (ox-LDL)-treated BMSCs. The serum lipid levels were elevated and bone formation-related markers were decreased in HFD-treated ApoE−/− mice and ox-LDL-treated BMSCs, which could be reversed by CoQ10. Additionally, PGC-1α protein expression was decreased in HFD-treated ApoE−/− mice and ox-LDL-treated BMSCs, accompanied by mitochondrial dysfunction, decreased ATP content and overgeneration of reactive oxygen species (ROS), which could also be antagonized by CoQ10. Furthermore, PGC-1α knockdown in vitro promoted ROS generation, BMSC apoptosis, and adipogenic differentiation while attenuating osteogenic differentiation in BMSCs. Mechanistically, it suggested that the expression of PGC1-α protein was increased with miR-130b-3p inhibitor treatment in osteoporosis under hyperlipidemia conditions to improve mitochondrial function. Collectively, CoQ10 alleviates hyperlipidemia-induced osteoporosis in ApoE−/− mice and regulates adipocyte-osteoblast lineage allocation. The possible underlying mechanism may involve the improvement of mitochondrial function by modulating the miR-130b-3p/PGC-1α pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

Abbreviations

ALP:

Alkaline phosphatase

BMSCs:

Bone marrow mesenchymal stem cells

CoQ10:

Coenzyme Q10

GSH:

Glutathione

HDL-C:

High-density lipoprotein

LDH:

Lactate dehydrogenase

LDL-C:

Low-density lipoprotein

MDA:

Malondialdehyde

ox-LDL:

Oxidized low-density lipoprotein

ROS:

Reactive oxidative species

RT-PCR:

Reverse transcription polymerase chain reaction

SOD:

Superoxide dismutase

T-CHO:

Total cholesterol

TG:

Triglyceride

References

  1. Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F (2022) Secondary osteoporosis. Endocr Rev 43:240–313

    Article  PubMed  Google Scholar 

  2. Zheng J, Brion MJ, Kemp JP, Warrington NM, Borges MC, Hemani G, Richardson TG, Rasheed H, Qiao Z, Haycock P, Ala-Korpela M, Davey Smith G, Tobias JH, Evans DM (2020) The effect of plasma lipids and lipid-lowering interventions on bone mineral density: a Mendelian randomization study. J Bone Miner Res 35:1224–1235

    Article  CAS  PubMed  Google Scholar 

  3. Yin W, Li Z, Zhang W (2019) Modulation of bone and marrow niche by cholesterol. Nutrients 11:1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science (New York) 284:143–147

    Article  CAS  Google Scholar 

  5. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L (2019) Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21:1019–1024

    Article  CAS  PubMed  Google Scholar 

  6. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG (2019) Mesenchymal stem cell migration and tissue repair. Cells 8:784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. King S, Klineberg I, Brennan-Speranza TC (2022) Adipose tissue dysfunction: impact on bone and osseointegration. Calcif Tissue Int 110:32–40

    Article  CAS  PubMed  Google Scholar 

  8. Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A (2020) Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci 21:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parhami F, Garfinkel A, Demer LL (2000) Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol 20:2346–2348

    Article  CAS  PubMed  Google Scholar 

  10. Casado-Díaz A, Túnez-Fiñana I, Mata-Granados JM, Ruiz-Méndez MV, Dorado G, Romero-Sánchez MC, Navarro-Valverde C, Quesada-Gómez JM (2017) Serum from postmenopausal women treated with a by-product of olive-oil extraction process stimulates osteoblastogenesis and inhibits adipogenesis in human mesenchymal stem-cells (MSC). Exp Gerontol 90:71–78

    Article  PubMed  Google Scholar 

  11. Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets 18:266–277

    Article  CAS  PubMed  Google Scholar 

  12. Fierro-Fernández M, Miguel V, Márquez-Expósito L, Nuevo-Tapioles C, Herrero JI, Blanco-Ruiz E, Tituaña J, Castillo C, Cannata P, Monsalve M, Ruiz-Ortega M, Ramos R, Lamas S (2020) MiR-9-5p protects from kidney fibrosis by metabolic reprogramming. FASEB J 34:410–431

    Article  PubMed  Google Scholar 

  13. Mota de Sá P, Richard AJ, Hang H, Stephens JM (2017) Transcriptional regulation of adipogenesis. Compr Physiol 7:635–674

    Article  PubMed  Google Scholar 

  14. Han L, Wang B, Wang R, Gong S, Chen G, Xu W (2019) The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 10:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YC, Li Y, Wang XY, Zhang D, Zhang H, Wu Q, He YQ, Wang JY, Zhang L, Xia H, Yan J, Li X, Ying H (2013) Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56:2275–2285

    Article  CAS  PubMed  Google Scholar 

  16. Luo W, Kim Y, Jensen ME, Herlea-Pana O, Wang W, Rudolph MC, Friedman JE, Chernausek SD, Jiang S (2022) miR-130b/301b is a negative regulator of beige adipogenesis and energy metabolism in vitro and in vivo. Diabetes 71:2360–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang S, Teague AM, Tryggestad JB, Chernausek SD (2017) Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun 487:607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  19. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  20. Li L, Wang B, Li Y, Li L, Dai Y, Lv G, Wu P, Li P (2020) Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1α signaling. Aging 12:16887–16898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen Y, Wu L, Qin D, Xia Y, Zhou Z, Zhang X, Wu X (2018) Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria. Part Fibre Toxicol 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miles MV (2007) The uptake and distribution of coenzyme Q10. Mitochondrion 7(Suppl):S72-77

    Article  CAS  PubMed  Google Scholar 

  23. Pallotti F, Bergamini C, Lamperti C, Fato R (2021) The roles of coenzyme q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci 23:128

    Article  PubMed  PubMed Central  Google Scholar 

  24. Testai L, Martelli A, Flori L, Cicero AFG, Colletti A (2021) Coenzyme Q(10): clinical applications beyond cardiovascular diseases. Nutrients 13:1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai KL, Chen LH, Chiou SH, Chiou GY, Chen YC, Chou HY, Chen LK, Chen HY, Chiu TH, Tsai CS, Ou HC, Kao CL (2011) Coenzyme Q10 suppresses oxLDL-induced endothelial oxidative injuries by the modulation of LOX-1-mediated ROS generation via the AMPK/PKC/NADPH oxidase signaling pathway. Mol Nutr Food Res 55(Suppl 2):S227-240

    CAS  PubMed  Google Scholar 

  26. Wear D, Vegh C, Sandhu JK, Sikorska M, Cohen J, Pandey S (2021) Ubisol-Q(10), a nanomicellar and water-dispersible formulation of coenzyme-Q(10) as a potential treatment for Alzheimer’s and Parkinson’s disease. Antioxidants (Basel, Switzerland) 10:764

    CAS  PubMed  Google Scholar 

  27. Somayajulu M, McCarthy S, Hung M, Sikorska M, Borowy-Borowski H, Pandey S (2005) Role of mitochondria in neuronal cell death induced by oxidative stress; neuroprotection by Coenzyme Q10. Neurobiol Dis 18:618–627

    Article  CAS  PubMed  Google Scholar 

  28. Allen RM, Vickers KC (2014) Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler Thromb Vasc Biol 34:1795–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Wang C, Jin Y, Yang Q, Meng Q, Liu Q, Dai Y, Cai L, Liu Z, Liu K, Sun H (2018) Activating the PGC-1α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production, DNA damage, and telomere function: implications on mitochondria and telomere link. Oxid Med Cell Longev 2018:2876350

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li X, Zhan J, Hou Y, Hou Y, Chen S, Luo D, Luan J, Wang L, Lin D (2019) Coenzyme Q10 regulation of apoptosis and oxidative stress in H(2)O(2) induced BMSC death by modulating the Nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury. Oxid Med Cell Longev 2019:6493081

    Article  PubMed  PubMed Central  Google Scholar 

  31. Montero M, Díaz-Curiel M, Guede D, Caeiro JR, Martín-Fernández M, Rubert M, Navarro D, de la Piedra C (2012) Effects of kalsis, a dietary supplement, on bone metabolism in the ovariectomized rats. J Osteoporos 2012:639427

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nie F, Zhang W, Cui Q, Fu Y, Li H, Zhang J (2020) Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway. Life Sci 258:118143

    Article  CAS  PubMed  Google Scholar 

  33. Mai FY, He P, Ye JZ, Xu LH, Ouyang DY, Li CG, Zeng QZ, Zeng CY, Zhang CC, He XH, Hu B (2019) Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages. Cell Prolif 52:e12663

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rizo-Liendo A, Sifaoui I, Arberas-Jiménez I, Reyes-Batlle M, Piñero JE, Lorenzo-Morales J (2020) Fluvastatin and atorvastatin induce programmed cell death in the brain eating amoeba Naegleria fowleri. Biomed Pharmacother 130:110583

    Article  CAS  PubMed  Google Scholar 

  35. Park KR, Lee JY, Kim BM, Kang SW, Yun HM (2020) TMARg, a novel anthraquinone isolated from Rubia cordifolia Nakai, increases osteogenesis and mineralization through BMP2 and β-catenin signaling. Int J Mol Sci 21:5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T, Tintut Y (2012) Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res 27:309–318

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Guo H, Liu Y, Wu F, Zhang H, Zhang Z, Xie Z, Sheng Z, Liao E (2015) Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin Endocrinol 82:53–58

    Article  CAS  Google Scholar 

  38. Chen K, Chen X, Xue H, Zhang P, Fang W, Chen X, Ling W (2019) Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct 10:814–823

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Liu H, Hao Y, Xu L, Zhang T, Liu Y, Guo L, Zhu L, Pei Z (2018) Coenzyme Q10 protects against hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice. Lipids Health Dis 17:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sahebkar A, Simental-Mendía LE, Stefanutti C, Pirro M (2016) Supplementation with coenzyme Q10 reduces plasma lipoprotein(a) concentrations but not other lipid indices: a systematic review and meta-analysis. Pharmacol Res 105:198–209

    Article  CAS  PubMed  Google Scholar 

  41. Lee SK, Lee JO, Kim JH, Kim N, You GY, Moon JW, Sha J, Kim SJ, Lee YW, Kang HJ, Park SH, Kim HS (2012) Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3T3-L1 preadipocytes. Cell Signal 24:2329–2336

    Article  CAS  PubMed  Google Scholar 

  42. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zheng D, Cui C, Yu M, Li X, Wang L, Chen X, Lin Y (2018) Coenzyme Q10 promotes osteoblast proliferation and differentiation and protects against ovariectomy-induced osteoporosis. Mol Med Rep 17:400–407

    CAS  PubMed  Google Scholar 

  44. Moon HJ, Ko WK, Jung MS, Kim JH, Lee WJ, Park KS, Heo JK, Bang JB, Kwon IK (2013) Coenzyme q10 regulates osteoclast and osteoblast differentiation. J Food Sci 78:H785-891

    Article  CAS  PubMed  Google Scholar 

  45. Li Q, Gao Z, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 8:439–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Savkovic V, Li H, Seon JK, Hacker M, Franz S, Simon JC (2014) Mesenchymal stem cells in cartilage regeneration. Curr Stem Cell Res Ther 9:469–488

    Article  CAS  PubMed  Google Scholar 

  47. Chia W, Liu J, Huang YG, Zhang C (2020) A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis 11:372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153

    Article  CAS  PubMed  Google Scholar 

  49. Ikeda N, Ishii M, Miyata H, Nishi Y, Suehiro F, Komabashiri N, Sakurai T, Nishimura M (2023) Role of reactive oxygen species (ROS) in the regulation of adipogenic differentiation of human maxillary/mandibular bone marrow-derived mesenchymal stem cells. Mol Biol Rep 50:5733–5745

    Article  CAS  PubMed  Google Scholar 

  50. Tan J, Xu X, Tong Z, Lin J, Yu Q, Lin Y, Kuang W (2015) Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res 3:15003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Geissler S, Textor M, Kühnisch J, Könnig D, Klein O, Ode A, Pfitzner T, Adjaye J, Kasper G, Duda GN (2012) Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS ONE 7:e52700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, Liu S, Yu M, Yan G, Feng C, He M, Zhang L, Ding F, Ma W, Bi Z, Xu C, Yuan Y, Cai B, Yang L (2019) miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids 17:590–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lou C, Xiao M, Cheng S, Lu X, Jia S, Ren Y, Li Z (2016) MiR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1α expression. Cell Death Dis 7:e2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng CF, Ku HC, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19:3447

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kong S, Cai B, Nie Q (2022) PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics 297:621–633

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported in part by Grants from the National Natural Science Foundation of China (82073851), Important Science Fund of Science and Technology Bureau of Liaoning Province (2020JH2/10300056), Fund of Department of Education of Liaoning Province (LZ2019016), the open project in 2022 of Chongqing Key Laboratory for the Development and Utilization of Authentic Medicinal Materials in the Three Gorges Reservoir Area (KFKT2022004), and the General Program of Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0299).

Author information

Authors and Affiliations

Authors

Contributions

HS and ML conceived and designed this study. MM and JW performed the major experiments, data analysis, and drafted the manuscript. CW, JZ, HW, and YZ provided technological support. All the authors read and approved this manuscript.

Corresponding authors

Correspondence to Huijun Sun or Mozhen Liu.

Ethics declarations

Conflict of interest

Meng Meng, Jiaying Wang, Changyuan Wang, Jianyu Zhao, Huihan Wang, Yukun Zhang, Huijun Sun, and Mozhen Liu have disclosed that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, M., Wang, J., Wang, C. et al. Coenzyme Q10 Protects Against Hyperlipidemia-Induced Osteoporosis by Improving Mitochondrial Function via Modulating miR-130b-3p/PGC-1α Pathway. Calcif Tissue Int 114, 182–199 (2024). https://doi.org/10.1007/s00223-023-01161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01161-5

Keywords

Navigation