Skip to main content
Log in

Sea Surface Wind Speed Retrieval from MTVZA-GYa Data

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

A neural network (NN) algorithm for the sea surface wind speed retrieval from the MTVZA-GYa Russian satellite microwave radiometer measurements is presented. The algorithm is based on the physical modeling of the brightness temperature of microwave radiation in the ocean–atmosphere system using new theoretical geophysical model functions of the dependence of ocean radiation on wind speed. The algorithm is validated by comparing the wind fields retrieved from the MTVZA-GYa data with those obtained from the AMSR2 radiometer (Japan) for different areas of the World Ocean with a difference in measurement time not exceeding five minutes. The validation has shown that the NNs with a number of neurons \(n\) from 3 to 8 provide the smallest root-mean-square difference between the AMSR2 and MTVZA-GYa retrieved wind speeds, namely 1.6 m/s. When mapping the wind speed in tropical cyclones, the best fit to the wind fields from the AMSR2 data is obtained using the NN with \(n=4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. V. V. Asmus, V. A. Zagrebaev, L. A. Makridenko, O. E. Milekhin, V. I. Solov’ev, A. B. Uspenskii, A. V. Frolov, and M. N. Khailov, "Meteorological Satellites Based on Meteor-M Polar Orbiting Platform," Meteorol. Gidrol., No. 12 (2014) [Russ. Meteorol. Hydrol., No. 12, 39 (2014)].

    Article  Google Scholar 

  2. V. V. Boldyrev, N. N. Gorobets, P. A. Il’gasov, O. V. Nikitin, V. Yu. Pantsov, Yu. N. Prokhorov, N. I. Strel’nikov, A. M. Strel’tsov, I. V. Chernyi, G. M. Chernyavskii, and V. V. Yakovlev, "MTVZA-GYa Satellite Microwave Scanner/Sounder," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 5 (2008).

  3. M. V. Bukharov, "Identification of the Properties of the Arctic and Antarctic Ice Cover from the MTVZA-GYa Microwave Radiometer Data," Meteorol. Gidrol., No. 7 (2015) [Russ. Meteorol. Hydrol., No. 7, 40 (2015)].

    Article  Google Scholar 

  4. E. V. Zabolotskikh, "External Calibration of MTVZA-GYa Microwave Radiometer Measurements in Scanner Channels. Part 1. The Modeling," Meteorol. Gidrol., No. 10 (2021) [Russ. Meteorol. Hydrol., No. 10, 46 (2021)].

    Article  Google Scholar 

  5. E. V. Zabolotskikh and E. A. Balashova, "External Calibration of MTVZA-GYa Microwave Radiometer Measurements in Scanner Channels. Part 2. The Experiment," Meteorol. Gidrol., No. 11 (2021) [Russ. Meteorol. Hydrol., No. 11, 46 (2021)].

    Article  Google Scholar 

  6. E. V. Zabolotskikh and B. Chapron, "Atmospheric Total Water Vapor Retrieval Using the AMSR2 Satellite Microwave Radiometer Measurements," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 14 (2017).

  7. E. V. Zabolotskikh and B. Chapron, "Geophysical Model Functions for Cold Water Microwave Radiation Dependency on Wind Speed in K- and Ka-Range at an Incidence Angle of 55°," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 5, 16 (2019).

    Google Scholar 

  8. E. V. Zabolotskikh and B. Chapron, "Arctic Sea X-band Microwave Emission Modeling Based on Satellite Data: Considering the Measurement Angle," Meteorol. Gidrol., No. 4 (2021) [Russ. Meteorol. Hydrol., No. 4, 46 (2021)].

    Article  Google Scholar 

  9. A. V. Kuz’min, I. A. Repina, I. N. Sadovskii, and A. B. Selunskii, "Microwave Radiometric Studies of Sea Surface," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 5, 12 (2015).

  10. L. M. Mitnik and M. L. Mitnik, "Algorithm for Sea Surface Wind Speed Retrieval from the AMSR-E/Aqua Satellite Microwave Radiometer Measurements," Issledovanie Zemli is Kosmosa, No. 6 (2011).

  11. A. B. Uspenskii, A. N. Rublev, E. V. Rusin, and V. P. Pyatkin, "Rapid Radiation Model for Analyzing the Meteor-M Satellite Hyperspectral IR Sounder Data," Issledovanie Zemli iz Kosmosa, No. 6 (2013).

  12. G. M. Chernyavskii, L. M. Mitnik, V. P. Kuleshov, M. L. Mitnik, and I. V. Chernyi, "Microwave Sensing of the Ocean, Atmosphere and Land Surface from the Meteor-M No. 2 Data," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 4, 15 (2018).

  13. M. H. Bettenhausen, C. K. Smith, R. M. Bevilacqua, N. Y. Wang, P. W. Gaiser, and S. Cox, "A Nonlinear Optimization Algorithm for WindSat Wind Vector Retrievals," IEEE Trans. Geosci. Remote Sens., No. 3, 44 (2006).

    Article  Google Scholar 

  14. M. A. Bourassa, T. Meissner, I. Cerovecki, P. S. Chang, X. Dong, G. De Chiara, C. Donlon, D. Dukhovskoy, J. Elya, A. Fore, M. Fewings, R. Foster, S. Gille, B. Haus, S. Hristova-Veleva, H. Holbach, Z. Jelenak, J. Knaff, S. Kranz, A. Manaster, M. Mazloff, C. Mears, A. Mouche, M. Portabella, N. Reul, L. Ricciardulli, E. Rodrı́guez, C. Sampson, D. Solis, A. Stoffelen, M. Stukel, B. Stiles, D. Weissman, and F. Wentz, "Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling," Front. Mar. Sci., 6 (2019).

    Article  Google Scholar 

  15. B. A. Harper, J. D. Kepert, and J. D. Ginger, Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions, TCP Sub-Project Report, WMO/TD-No. 1555 (WMO, 2010).

  16. K. A. Hilburn, F. J. Wentz, D. K. Smith, and P. D. Ashcroft, "Correcting Active Scatterometer Data for the Effects of Rain Using Passive Radiometer Data," J. Appl. Meteorol. Climatol., No. 3, 45 (2006).

    Article  Google Scholar 

  17. C. Huang, S. C. Chaoying, A. Zhang, and Y. Pang, "Statistical Characteristics of Raindrop Size Distribution in Monsoon Season over South China Sea," Remote Sens., No. 15, 13 (2021).

    Article  Google Scholar 

  18. D. Kim and D. R. Lyzenga, "Efficient Model-based Estimation of Atmospheric Transmittance and Ocean Wind Vectors from WindSat Data," IEEE Trans. Geosci. Remote Sens., No. 8, 46 (2008).

    Article  Google Scholar 

  19. T. Meissner and F. Wentz, "The Emissivity of the Ocean Surface between 6 and 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles," IEEE Trans. Geosci. Remote Sens., No. 8, 50 (2012).

    Article  Google Scholar 

  20. T. Meissner and F. J. Wentz, "Wind-vector Retrievals under Rain with Passive Satellite Microwave Radiometers," IEEE Trans. Geosci. Remote Sens., No. 9, 47 (2009).

    Article  Google Scholar 

  21. W. J. Plant and V. Irisov, "A Joint Active/Passive Physical Model of Sea Surface Microwave Signatures," J. Geophys. Res. Oceans, No. 4, 122 (2017).

    Article  Google Scholar 

  22. Y. Quilfen, C. Prigent, B. Chapron, A. A. Mouche, and N. Houti, "The Potential of QuikSCAT and WindSat Observations for the Estimation of Sea Surface Wind Vector under Severe Weather Conditions," J. Geophys. Res., 112 (2007).

  23. N. Reul, J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr, "SMOS Satellite L-band Radiometer: A New Capability for Ocean Surface Remote Sensing in Hurricanes," J. Geophys. Res. Oceans, No. C2, 117 (2012).

  24. A. Shibata, "A Wind Speed Retrieval Algorithm by Combining 6 and 10 GHz Data from Advanced Microwave Scanning Radiometer: Wind Speed Inside Hurricanes," J. Oceanogr., No. 3, 62 (2006).

    Article  Google Scholar 

  25. S. Soisuvarn, Z. Jelenak, and W. L. Jones, "An Ocean Surface Wind Vector Model Function for a Spaceborne Microwave Radiometer," IEEE Trans. Geosci. Remote Sens., No. 10, 45 (2007).

    Article  Google Scholar 

  26. F. J. Wentz, "A Well-calibrated Ocean Algorithm for Special Sensor Microwave/Imager," J. Geophys. Res., 102 (1997).

    Article  Google Scholar 

  27. F. J. Wentz and T. Meissner, "Atmospheric Absorption Model for Dry Air and Water Vapor at Microwave Frequencies below 100 GHz Derived from Spaceborne Radiometer Observations," Radio Sci., No. 5, 51 (2016).

    Article  Google Scholar 

  28. E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, "GCOM-W1 AMSR2 and MetOp-A ASCAT Wind Speeds for the Extratropical Cyclones over the North Atlantic," Remote Sens. Environ., 147 (2014).

    Article  Google Scholar 

  29. E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, "New Approach for Severe Marine Weather Study Using Satellite Passive Microwave Sensing," Geophys. Res. Lett., No. 13, 40 (2013).

    Article  Google Scholar 

  30. E. V. Zabolotskikh, L. M. Mitnik, N. Reul, and B. Chapron, "New Possibilities for Geophysical Parameter Retrievals Opened by GCOM-W1 AMSR2," IEEE J. Selected Topics in Appl. Earth Observations and Remote Sens., No. 9, 8 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabolotskikh.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 8, pp. 24-34. https://doi.org/10.52002/0130-2906-2023-8-24-34.

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskikh, E.V., Azarov, S.M. & Zhivotovskaya, M.A. Sea Surface Wind Speed Retrieval from MTVZA-GYa Data. Russ. Meteorol. Hydrol. 48, 658–665 (2023). https://doi.org/10.3103/S1068373923080022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923080022

Keywords

Navigation