Skip to main content
Log in

Optimal investment and pricing strategies of online–offline model for mobile health provider

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Due to the lack of medical examinations, in online health platforms (called online channels), a portion of users are unable to be diagnosed. Recently, many mobile health providers have started investing in offline clinics or hospitals (called offline channels) to offer further health services to these customers (i.e., the online–offline model). Providers need to determine the optimal investment and pricing strategies of online and offline channels to maximize profits. In this paper, we first analyze the optimal strategies of the provider in a monopoly case, and find that the properties of optimal online and offline decisions tend to be opposite due to the competitive nature of the two channels. Furthermore, we compare this with the case where the provider invests only in the online channel (i.e., the online-only model) in terms of profitability and show that if the value of the online health (or the offline health) is not high (high enough), then the provider should choose the online–offline model, otherwise she should adopt the online-only model. Finally, we investigate a case of an m-health platform competing with local clinics and find certain interesting insights. In particular, unlike the monopoly case, in the competition case, the platform should operate the offline channel when the sensitivity of patients to the online service quality is at a moderate level, and not otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://research2guidance.com/product/connectivity-in-digital-health/.

  2. https://www.grandviewresearch.com/industry-analysis/mhealth-app-market.

References

  1. Zhang, J. (2017). Value chain building and business model in the mobile device healthcare industry-the case of China. International Journal of Healthcare Technology and Management, 16(1–2), 59–76. https://doi.org/10.1504/IJHTM.2017.087598

    Article  Google Scholar 

  2. Laxminarayan, S., & Istepanian, R. S. H. (2000). Unwired e-med: The next generation of wireless and internet telemedicine systems. IEEE Transactions on Information Technology in Biomedicine, 4(3), 189–193. https://doi.org/10.1109/TITB.2000.5956074

    Article  Google Scholar 

  3. Free, C., Phillips, G., Watson, L., Galli, L., Felix, L., Edwards, P., et al. (2013). The effectiveness of mobile-health technologies to improve health care service delivery processes: A systematic review and meta-analysis. Plos Medicine, 10(1), e1001363. https://doi.org/10.1371/journal.pmed.1001363

    Article  Google Scholar 

  4. Bhargava, H. K., & Mishra, A. N. (2011). Electronic medical records and physician productivity: Evidence from panel data analysis. Social Science Electronic Publishing, 60(10), 2543–2562. https://doi.org/10.2139/ssrn.1952287

    Article  Google Scholar 

  5. Liu, X., & Varshney, U. (2020). Mobile health: A carrot and stick intervention to improve medication adherence. Decision Support Systems, 128, 113165. https://doi.org/10.1016/j.dss.2019.113165

    Article  Google Scholar 

  6. Sunyaev, A., Dehling, T., Taylor, P. L., & Mandl, K. D. (2014). Availability and quality of mobile health app privacy policies. Journal of the American Medical Informatics Association, 22(e1), e28. https://doi.org/10.1136/amiajnl-2013-002605

    Article  Google Scholar 

  7. Adjerid, I., Acquisti, A., Telang, R., Padman, R., & Milstein, J. A. (2015). The impact of privacy regulation and technology incentives: The case of health information exchanges. Management Science, 62(4), 1042–1063.

    Article  Google Scholar 

  8. Guo, X., Zhang, X., & Sun, Y. (2016). The privacy–personalization paradox in mHealth services acceptance of different age groups. Electronic Commerce Research and Applications, 16, 55–65. https://doi.org/10.1016/j.elerap.2015.11.001

    Article  Google Scholar 

  9. Chen, Y., Ding, S., Zheng, H., Zhang, Y., & Yang, S. (2018). Exploring diffusion strategies for mHealth promotion using evolutionary game model. Applied Mathematics and Computation, 336, 148–161. https://doi.org/10.1016/j.amc.2018.04.062

    Article  Google Scholar 

  10. Wang, L., Wu, T., Guo, X., Zhang, X., Li, Y., & Wang, W. (2018). Exploring mHealth monitoring service acceptance from a service characteristics perspective. Electronic Commerce Research and Applications, 30, 159–168. https://doi.org/10.1016/j.elerap.2018.06.003

    Article  Google Scholar 

  11. Wang, M., Liang, D., Xu, Z., & Ye, D. (2020). The evaluation of mobile health apps: A psychological perception-based probabilistic linguistic belief thermodynamic multiple attribute decision making method. Journal of the Operational Research Society, 8, 1–15. https://doi.org/10.1080/01605682.2020.1801361

    Article  Google Scholar 

  12. Huang, N., Yan, Z., & Yin, H. (2021). Effects of online–offline service integration on e-healthcare providers: A quasi-natural experiment. Production and Operations Management, 30(8), 2359–2378. https://doi.org/10.2139/ssrn.3768055

    Article  Google Scholar 

  13. Wang, X., Zhang, Z., Yang, L., & Zhao, J. (2021). Price and capacity decisions in a telemedicine service system under government subsidy policy. International Journal of Production Research, 59(17), 5130–5143. https://doi.org/10.1080/00207543.2020.1774090

    Article  Google Scholar 

  14. Varshney, U. (2014). A model for improving quality of decisions in mobile health. Decision Support Systems, 62, 66–77. https://doi.org/10.1016/j.dss.2014.03.005

    Article  Google Scholar 

  15. Chib, A., Van Velthoven, M. H., & Car, J. (2015). M-health adoption in low-resource environments: a review of the use of mobile healthcare in developing countries. Journal of Health Communication., 20(1), 4–34. https://doi.org/10.1080/10810730.2013.864735

    Article  Google Scholar 

  16. Aboelmaged, M., Hashem, G., & Mouakket, S. (2021). Predicting subjective well-being among mHealth users: A readiness–value model. International Journal of Information Management, 56(2), 102247. https://doi.org/10.1016/j.ijinfomgt.2020.102247

    Article  Google Scholar 

  17. Chen, J., Zhang, H., & Sun, Y. (2012). Implementing coordination contracts in a manufacturer stackelberg dual-channel supply chain. Omega, 40(5), 571–583. https://doi.org/10.1016/j.omega.2011.11.005

    Article  Google Scholar 

  18. Tsay, A., & Agrawal, N. (2004). Channel conflict and coordination in the e-commerce age. Production & Operations Management, 13(1), 93–110. https://doi.org/10.1111/j.1937-5956.2004.tb00147.x

    Article  Google Scholar 

  19. Chen, J., Liang, L., Yao, D. Q., & Sun, S. (2017). Price and quality decisions in dual-channel supply chains. European Journal of Operational Research, 259(3), 935–948. https://doi.org/10.1016/j.ejor.2016.11.016

    Article  Google Scholar 

  20. Zhao, J. (2020). Will the community o2o service supply channel benefit the elderly healthcare service supply chain? Electronic Commerce Research, 4, 94250. https://doi.org/10.1007/s10660-020-09425-0

    Article  Google Scholar 

  21. Yan, R., & Pei, Z. (2009). Retail services and firm profit in a dual-channel market. Journal of Retailing & Consumer Services, 16(4), 306–314. https://doi.org/10.1016/j.jretconser.2009.02.006

    Article  Google Scholar 

  22. Batarfi, R., Jaber, M. Y., & Zanoni, S. (2016). Dual-channel supply chain: A strategy to maximize profit. Applied Mathematical Modelling, 40(21–22), 9454–9473. https://doi.org/10.1016/j.apm.2016.06.008

    Article  Google Scholar 

  23. Rofin, T. M., & Mahanty, B. (2018). Optimal dual-channel supply chain configuration for product categories with different customer preference of online channel. Electronic Commerce Research, 18(3), 507–536. https://doi.org/10.1007/s10660-017-9269-4

    Article  Google Scholar 

  24. Batarfi, R., Jaber, M. Y., & Aljazzar, S. M. (2017). A profit maximization for a reverse logistics dual-channel supply chain with a return policy. Computers and Industrial Engineering, 106, 58–83. https://doi.org/10.1016/j.cie.2017.01.024

    Article  Google Scholar 

  25. Zhang, C., Liu, Y., & Han, G. (2020). Two-stage pricing strategies of a dual-channel supply chain considering public green preference. Computers & Industrial Engineering, 151, 106988. https://doi.org/10.1016/j.cie.2020.106988

    Article  Google Scholar 

  26. Kim, S. M. (2016). How can we make a socially optimal large-scale media platform? analysis of a monopolistic internet media platform using two-sided market theory. Telecommunications Policy, 40(9), 899–918. https://doi.org/10.1016/j.telpol.2016.07.001

    Article  Google Scholar 

  27. Armstrong, M. (2006). Competition in two-sided markets. Rand Journal of Economics, 37(3), 668–691.

    Article  Google Scholar 

  28. Hagiu, A. (2009). Two-sided platforms: Product variety and pricing structures. Journal of Economics & Management Strategy, 18(4), 1011–1043. https://doi.org/10.1111/j.1530-9134.2009.00236.x

    Article  Google Scholar 

  29. Hagiu, A., & Spulber, D. (2013). First-party content and coordination in two-sided markets. Management Science, 59(4), 933–949.

    Article  Google Scholar 

  30. Dou, G., He, P., & Xu, X. (2016). One-side value-added service investment and pricing strategies for a two-sided platform. International Journal of Production Research, 54(13), 3808–3821. https://doi.org/10.1080/00207543.2016.1148275

    Article  Google Scholar 

  31. Dou, G., Lin, X., & Xu, X. (2018). Value-added service investment strategy of a two-sided platform with the negative intra-group network externality. Kybernetes, 47(5), 937–956. https://doi.org/10.1108/K-06-2017-0215

    Article  Google Scholar 

  32. Tan, B., Anderson, E. G., Jr., & Parker, G. G. (2020). Platform pricing and investment to drive third-party value creation in two-sided networks. Information Systems Research, 31(1), 217–239. https://doi.org/10.1287/isre.2019.0882

    Article  Google Scholar 

  33. He, B., Gupta, V., & Mirchandani, P. (2021). Online selling through O2O platform or on your own? Strategic implications for local brick-and-mortar stores. Omega, 103, 102424. https://doi.org/10.1016/j.omega.2021.102424

    Article  Google Scholar 

  34. Huang, P., Lyu, G., & Xu, Y. (2022). Quality regulation on two-sided platforms: Exclusion, subsidization, and first-party applications. Management Science, 68(6), 4415–4434. https://doi.org/10.2139/ssrn.3738426

    Article  Google Scholar 

  35. Cohen, M. A., & Whang, S. (1997). Competing in product and service: A product life-cycle model. Management science, 43(4), 535–545. https://doi.org/10.1287/mnsc.43.4.535

    Article  Google Scholar 

  36. Castro-Leal, F., Dayton, J., & Demery, L. (2000). Public spending on health care in Africa: Do the poor benefit? Bulletin of the World health Organization, 78(1), 66–74. https://doi.org/10.1590/S0042-96862000000100007

    Article  Google Scholar 

  37. Dan, B., Xu, G., & Liu, C. (2012). Pricing policies in a dual-channel supply chain with retail services. International Journal of Production Economics, 139(1), 312–320. https://doi.org/10.1016/j.ijpe.2012.05.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous referees and the Associate editor for suggestions that substantially improve this article. This research was supported by the National Natural Science Foundation of China under Grants 71701214 and 71991463, and supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang under Grant SZJ2022C001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof proposition 1

When \({{u_{1} + \alpha_{1} x^{*} - p_{1} > (u_{2} + \alpha_{2} y^{*} - p_{2} )} \mathord{\left/ {\vphantom {{u_{1} + \alpha_{1} x^{*} - p_{1} > (u_{2} + \alpha_{2} y^{*} - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }\), for any \((x,y)\), it is easy to verify that.

$$p_{1}^{*} = \frac{{u_{1} + \alpha_{1} x}}{2},\quad p_{2}^{*} { = }\frac{{u_{2} + c_{0} + \alpha_{2} y}}{2}$$

So the objective function of profit can be rewritten as:

\(\pi (x,y,p_{1}^{*} ,p_{2}^{*} ) = {{\beta \left( {\frac{{u_{1} + \alpha_{1} x}}{2}} \right)^{2} + \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right)^{2} (1 - \rho_{0} x)} \mathord{\left/ {\vphantom {{\beta \left( {\frac{{u_{1} + \alpha_{1} x}}{2}} \right)^{2} + \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right)^{2} (1 - \rho_{0} x)} \gamma }} \right. \kern-0pt} \gamma } - \frac{{c_{1} x^{2} }}{2} - \frac{{c_{2} y^{2} }}{2} - C\).

Firstly, we check the extreme point of the profit function. Because.

\(\frac{{\partial \pi (x,y,p_{1}^{*} ,p_{2}^{*} )}}{\partial x} = {{\beta \alpha_{1} \left( {\frac{{u_{1} + \alpha_{1} x}}{2}} \right) - \rho_{0} \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right)^{2} } \mathord{\left/ {\vphantom {{\beta \alpha_{1} \left( {\frac{{u_{1} + \alpha_{1} x}}{2}} \right) - \rho_{0} \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right)^{2} } \gamma }} \right. \kern-0pt} \gamma } - c_{1} x\), \(\frac{{\partial \pi^{2} (x,y,p_{1}^{*} ,p_{2}^{*} )}}{{\partial x^{2} }} = {{\beta \alpha_{1}^{2} } \mathord{\left/ {\vphantom {{\beta \alpha_{1}^{2} } 2}} \right. \kern-0pt} 2} - c_{1} ,\)

according to the hypothesis \({{\beta \alpha_{1}^{2} } \mathord{\left/ {\vphantom {{\beta \alpha_{1}^{2} } 2}} \right. \kern-0pt} 2} - c_{1} { < }\,0\), we know \(\pi (x,y,p_{1}^{*} ,p_{2}^{*} )\) is a concave function of \(x\), and there is a maximum extreme value point \(x^{*}\). We can easily get when \(0 < x^{1} { = }\) \(\frac{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} /\gamma - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}\)\(\le Q\), \(x^{*} { = }\frac{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} /\gamma - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}\). Thus we have

$$\begin{aligned} \pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} ) = & \beta \left( {\frac{{u_{1} + \alpha_{1} \frac{{{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} } \mathord{\left/ {\vphantom {{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} } \gamma }} \right. \kern-0pt} \gamma } - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}}}{2}} \right)^{2} \\ \quad & + \left( {\frac{{u_{2} - c_{0} + \alpha_{2} y}}{2}} \right)^{2} {{\left( {1 - \rho_{0} \frac{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} /\gamma - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - \rho_{0} \frac{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} /\gamma - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}} \right)} \gamma }} \right. \kern-0pt} \gamma } \\ \quad & - \, \frac{{c_{1} \left( {\frac{{{{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} } \mathord{\left/ {\vphantom {{\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} } \gamma }} \right. \kern-0pt} \gamma } - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}} \right)^{2} }}{2} - \frac{{c_{2} y^{2} }}{2} - C \\ = & \beta \left( {\frac{{u_{1} }}{2} + \frac{{\alpha_{1} \rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1}^{2} u_{1} \gamma }}{{4\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right)^{2} \\ \quad & + \left( {\frac{{u_{2} - c_{0} + \alpha_{2} y}}{2}} \right)^{2} \left( {\frac{1}{\gamma } - \frac{{\rho_{0}^{2} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1} \gamma u_{1} \rho_{0} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right) \\ \quad & - \frac{{c_{1} (\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1} u_{1} \gamma )^{2} }}{{8\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} - \frac{{c_{2} y^{2} }}{2} - C \\ \end{aligned}$$

\(\pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )\) can be rewritten as a one variable quartic equation of \(y\), i.e.,

$$\begin{aligned} f(y) = & \beta \left( {\frac{{u_{1} }}{2} + \frac{{\alpha_{1} \rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1}^{2} u_{1} \gamma }}{{4\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right)^{2} \\ \quad & + \left( {\frac{{u_{2} - c_{0} + \alpha_{2} y}}{2}} \right)^{2} \left( {\frac{1}{\gamma } - \frac{{\rho_{0}^{2} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1} \gamma u_{1} \rho_{0} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right) \\ \quad & - \frac{{c_{1} (\rho_{0} (u_{2} + \alpha_{2} y - c_{0} )^{2} - 2\beta \alpha_{1} u_{1} \gamma )^{2} }}{{8\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} - \frac{{c_{2} y^{2} }}{2} - C \\ \end{aligned}$$

Taking the first and second order derivatives of \(f(y)\), we have

$$\begin{aligned} f^{\prime}(y) = & \alpha_{2} \left( {\frac{{\beta \alpha_{1}^{2} \rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} - \frac{{\rho_{0}^{2} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}} - \frac{{c_{1} \rho_{0}^{2} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }}} \right)(u_{2} + \alpha_{2} y - c_{0} )^{3} \\ \quad & + \alpha_{2} \left( {\frac{{\beta \alpha_{1} \rho_{0} }}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}(\frac{{u_{1} }}{2} - \frac{{\beta \alpha_{1}^{2} u_{1} }}{{2(\beta \alpha_{1}^{2} - 2c_{1} )}}) + \frac{1}{2\gamma } + \frac{{\beta \alpha_{1} \rho_{0} u_{1} }}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}} + \frac{{\beta \alpha_{1} \rho_{0} u_{1} c_{1} }}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }}} \right)(u_{2} + \alpha_{2} y - c_{0} ) - c_{2} y \\ = & \alpha_{2} \left( {\frac{{(\beta \alpha_{1}^{2} - 2c_{1} )\rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} - \frac{{\rho_{0}^{2} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right)(u_{2} + \alpha_{2} y - c_{0} )^{3} \\ \quad & + \alpha_{2} \left( {\frac{1}{2\gamma } + \frac{{\beta \alpha_{1} \rho_{0} u_{1} }}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}(1 - \frac{1}{{2(\beta \alpha_{1}^{2} - 2c_{1} )}} + \frac{{c_{1} }}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right)(u_{2} + \alpha_{2} y - c_{0} ) - c_{2} y \\ = & \frac{{ - \alpha_{2} \rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} + \alpha_{2} y - c_{0} )^{3} + \alpha_{2} \left( {\frac{1}{2\gamma } + \frac{{\beta \alpha_{1} \rho_{0} u_{1} }}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}} \right)(u_{2} + \alpha_{2} y - c_{0} ) - c_{2} y \\ \end{aligned}$$
$$f^{\prime\prime}(y) = = \frac{{ - 3\alpha_{2}^{2} \rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} + \alpha_{2} y - c_{0} )^{2} + \alpha_{2}^{2} (\frac{1}{2\gamma } + \frac{{\beta \alpha_{1} \rho_{0} u_{1} }}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}) - c_{2} .$$

Note that \(p_{2}^{*} - c_{0} { = }\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2} > 0\) (otherwise the profit of the offline clinic must be negative). It is easy to verify whether \(f^{\prime\prime}(y) = 0\) has only one root or no root over \(y \in (0,\;\infty )\). When \(f^{\prime\prime}(y) = 0\) has only one root \(\overline{\overline{y}}\) over \((0,\;\infty )\), because \({{\beta \alpha_{1}^{2} } \mathord{\left/ {\vphantom {{\beta \alpha_{1}^{2} } 2}} \right. \kern-0pt} 2} - c_{1} { < }0\), we have \(f^{\prime\prime}(y) < 0\) when \(y \in (0,\;\overline{\overline{y}})\) and \(f^{\prime\prime}(y) > 0\) when \(y \in (\overline{\overline{y}},\;\infty )\). If \(f^{\prime}(0) > 0\) but \(f^{\prime}(\overline{\overline{y}}) < 0\), it is clear that there are two positive roots of \(f^{\prime}(y) = 0\). We denote the two roots as \(y_{1,2}\) and it can be easily verified that \(y_{1}\) and \(y_{2}\) are the maximum value point and minimum value point of \(f(y)\) respectively. Hence, the optimal offline quality \(y^{*} \in \{ 0,\;y_{1} ,\;\xi \}\). If \(f^{\prime}(0) \le 0\), \(f(y)\) has only a minimum point. Thus, there must be \(y^{*} \in \{ 0,\;\xi \}\). If there is no root of \(f^{\prime\prime}(y) = 0\) over \(y \in (0,\;\infty )\), we can verify that \(f^{\prime\prime}(y) > 0\) over \(y \in (0,\;\infty )\), which means \(f(y)\) is convex function. Hence we have \(y^{*} \in \{ 0,\;\xi \}\).

When \(x^{1} < 0\) or \(x^{1} > \xi\), \(x^{*} \in \{ 0,\;\xi \}\). Then we get the profit function.

\(\pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} ) = \beta \left( {\frac{{u_{1} + \alpha_{1} x^{*} }}{2}} \right)^{2} + \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right)^{2} {{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} \gamma }} \right. \kern-0pt} \gamma } - \frac{{c_{1} x^{*2} }}{2} - \frac{{c_{2} y^{2} }}{2} - C\).

Taking the first and second derivatives of \(\pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )\) respectively, we have

$$\begin{gathered} \frac{{\partial \pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )}}{\partial y} = \alpha_{2} \left( {\frac{{u_{2} + \alpha_{2} y - c_{0} }}{2}} \right){{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} \gamma }} \right. \kern-0pt} \gamma } - c_{2} y, \hfill \\ \frac{{\partial^{2} \pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )}}{{\partial y^{2} }} = \frac{{\alpha_{2}^{2} }}{2}{{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} \gamma }} \right. \kern-0pt} \gamma } - c_{2} . \hfill \\ \end{gathered}$$

If \(\alpha_{2}^{2} (1 - \rho_{0} x^{*} ){/(2}\gamma {)} - c_{2} \ge 0\), \(\pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )\) is convex function over \(y \in (0,\;\infty )\), and hence we have \(y^{*} \in \{ 0,\;\xi \}\). If \(\alpha_{2}^{2} {{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} {{2}\gamma }}} \right. \kern-0pt} {{2}\gamma }} - c_{2} < 0\), \(\pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )\) is concave function over \(y \in (0,\;\infty )\). Letting \(\frac{{\partial \pi (x^{*} ,y,p_{1}^{*} ,p_{2}^{*} )}}{\partial y} = 0\), we have \(\dot{y} = \frac{{\alpha_{2} (u_{2} - c_{0} ){{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} \gamma }} \right. \kern-0pt} \gamma }}}{{2c_{2} - \alpha_{2}^{2} {{(1 - \rho_{0} x^{*} )} \mathord{\left/ {\vphantom {{(1 - \rho_{0} x^{*} )} \gamma }} \right. \kern-0pt} \gamma }}}\). Thus we know that \(y^{*} \in \{ 0,\;\dot{y},\;\xi \}\).

Proof of proposition 2

If \(u_{1} + \alpha_{1} x^{*} - p_{1} { = }{{(u_{2} + \alpha_{2} y^{*} - p_{2} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y^{*} - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }\), we can rewrite it as \(p_{1} { = }\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}_{1} { = }u_{1} + \alpha_{1} x - {{(u_{2} + \alpha_{2} y - p_{2} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }\). Thus the optimal problem is rewritten as.

$$\begin{aligned} {\text{Max }}\pi (x,y,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}_{1} ,p_{2} ) = & \beta (u_{1} + \alpha_{1} x - {{(u_{2} + \alpha_{2} y - p_{2} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }){{(u_{2} + \alpha_{2} y - p_{2} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }) \\ \quad & + (p_{2} - c_{0} )(1 - \rho_{0} x)(u_{2} + \alpha_{2} y - p_{2} ){/}\gamma - \frac{{c_{1} x^{2} }}{2} - \frac{{c_{2} y^{2} }}{2} - C \\ \end{aligned}$$
$${\text{s.t}}{.}\quad 0 \le x,y \le \xi .$$

Firstly, for any (\(x\), \(y\)), since

$$\frac{\partial \pi }{{\partial p_{2} }} = 2\beta (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma^{2} - \beta (u_{1} + \alpha_{1} x){/}\gamma { + }(1 - \rho_{0} x)(u_{2} + \alpha_{2} y - p_{2} ){/}\gamma - (p_{2} - c_{0} )(1 - \rho_{0} x){/}\gamma$$
(7)
$$\frac{{\partial^{2} \pi (x,y,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{p}_{1} ,p_{2} )}}{{\partial p_{2}^{2} }} = - 2\beta {/}\gamma^{2} - {{2(1 - \rho_{0} x)} \mathord{\left/ {\vphantom {{2(1 - \rho_{0} x)} \gamma }} \right. \kern-0pt} \gamma } < 0.$$

It is clear that \(p_{2}^{*}\) is determined by \(\frac{\partial \pi }{{\partial p_{2} }} = 0\). Because \(0 \le x,y \le \xi\), \(x^{*}\) and \(y^{*}\) can be got from \(\frac{\partial \pi }{{\partial x}} = 0\) and \(\frac{\partial \pi }{{\partial y}} = 0\) respectively, or at the endpoints \(0,\;\xi\). Now, we discuss the following cases:

Case (1): \(x^{*}\) and \(y^{*}\) are satisfied \(\frac{\partial \pi }{{\partial x}} = 0\) and \(\frac{\partial \pi }{{\partial y}} = 0\) respectively, i.e.,

$$\frac{\partial \pi }{{\partial x}}{ = }\beta \alpha_{1} (u_{2} + \alpha_{2} y - p_{2}^{*} ){/}\gamma - \rho_{0} (p_{2}^{*} - c_{0} )(u_{2} + \alpha_{2} y - p_{2}^{*} ){/}\gamma - c_{1} x = 0,$$
(8)
$$\frac{\partial \pi }{{\partial y}} = - 2\beta \alpha_{2} (u_{2} - p_{2}^{*} ){/}\gamma^{2} - 2\beta \alpha_{2}^{2} y{/}\gamma^{2} - c_{2} y{ + }\beta \alpha_{2} (u_{1} + \alpha_{1} x){/}\gamma { + }\alpha_{2} (p_{2}^{*} - c_{0} )(1 - \rho_{0} x){/}\gamma { = }0.$$
(9)

We can derive \(x^{*}\) and \(y^{*}\) from the simultaneous Eqs. (7) (8) (9), i.e.,

\(\begin{gathered} x^{*} = \frac{{\beta \alpha_{1} - \rho_{0} (p_{2}^{*} - c_{0} )}}{{c_{1} \gamma }}\frac{{(u_{2} - p_{2}^{*} )c_{1} c_{2} \gamma^{2} /\alpha_{2}^{2} { + }\beta u_{1} c_{1} \gamma + c_{1} \gamma (p_{2}^{*} - c_{0} )}}{{2\beta c_{1} + c_{1} c_{2} \gamma^{2} /\alpha_{2}^{2} - (\beta \alpha_{1} - \rho_{0} (p_{2}^{*} - c_{0} ))^{2} }}, \hfill \\ y^{*} = \frac{{ - 2\beta c_{1} (u_{2} - p_{2}^{*} ) + \beta u_{1} c_{1} \gamma + c_{1} \gamma (p_{2}^{*} - c_{0} ) + (\beta \alpha_{1} - \rho_{0} (p_{2}^{*} - c_{0} ))^{2} (u_{2} - p_{2}^{*} )}}{{2\beta \alpha_{2} c_{1} + c_{1} c_{2} \gamma^{2} /\alpha_{2} - \alpha_{2} (\beta \alpha_{1} - \rho_{0} (p_{2}^{*} - c_{0} ))^{2} }}; \hfill \\ \end{gathered}\), where \(p_{2}^{*}\) is one root of the equation \(p_{2} = \frac{{ - c_{2} \gamma y^{*} }}{{\alpha_{2} (1 - \rho_{0} x^{*} )}} + u_{2} + \alpha_{2} y^{*}\).

Case (2): \(x^{*}\) is satisfied \(\frac{\partial \pi }{{\partial x}} = 0\) and \(y^{*} \in \{ 0,\xi \}\). Then we can get

$$\begin{aligned} \frac{\partial \pi }{{\partial x}}{ = } & \beta \alpha_{1} (u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma - \rho_{0} (p_{2} - c_{0} )(u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma - c_{1} x = 0, \\ \frac{\partial \pi }{{\partial p_{2} }} = & 2\beta (u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma^{2} - (u_{1} + \alpha_{1} x){/}\gamma \\ \quad & { + }(1 - \rho_{0} x)(u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma - (p_{2} - c_{0} )(1 - \rho_{0} x){/}\gamma \\ \end{aligned}$$

Solving the equations, we have

$$x^{*} = \frac{{\beta \alpha_{1} (u_{2} + \alpha_{2} y^{*} - p_{2} ) - \rho_{0} (p_{2} - c_{0} )(u_{2} + \alpha_{2} y^{*} - p_{2} )}}{{\gamma c_{1} }},$$

\(p_{2}^{*} { = }\frac{{{2}\beta (u_{2} + \alpha_{2} y^{*} ){ + }\gamma (1 - \rho_{0} x)(u_{2} + \alpha_{2} y^{*} { + }c_{0} ) - \gamma (u_{1} + \alpha_{1} x^{*} )}}{{2\beta { + }2\gamma (1 - \rho_{0} x^{*} )}}\), where \(y^{*} \in \{ 0,\xi \}\).

Case (3): \(x^{*} = {0}\) while \(y^{*}\) is at the point \(\{ 0,\xi \}\) or satisfied \(\frac{\partial \pi }{{\partial y}} = 0\):

  1. (a)

    \(y^{*}\) is satisfied \(\frac{\partial \pi }{{\partial y}} = 0\). This is equivalent to.

\(\frac{\partial \pi }{{\partial y}} = = - 2\beta c_{2} y(1 - 5\gamma ){ + }\beta \alpha_{2} u_{1} + \alpha_{2} (u_{2} + \alpha_{2} y - c_{0} {) = }0\), and.

\(\frac{\partial \pi }{{\partial p_{2} }}{ = 2}\beta (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma^{2} - u_{1} {/}\gamma + (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma - (p_{2} - c_{0} ){/}\gamma = 0\).

Solving the above equations, we have.

\(y^{*} = \frac{{\beta \alpha_{2} u_{1} - \alpha_{2} (c_{0} - u_{2} )}}{{2\beta c_{2} (1 + 5\gamma ) - \alpha_{2}^{2} }}\), \(p_{2}^{*} = u_{2} - \frac{{(c_{2} \gamma - \alpha_{2}^{2} {)(}\beta u_{1} - (c_{0} - u_{2} ))}}{{2\beta c_{2} (1 + 5\gamma ) - \alpha_{2}^{2} }}\).

  1. (b)

    \(y^{*} \in \{ 0,\xi \}\). From \(\frac{\partial \pi }{{\partial p_{2} }}{ = 2}\beta (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma^{2} - u_{1} {/}\gamma + (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma - (p_{2} - c_{0} ){/}\gamma = 0\), we have.

\(p_{2}^{*} = \frac{{(u_{2} + \alpha_{2} y^{*} )({2}\beta + \gamma ) - (u_{1} - c_{0} )\gamma }}{{{2}\beta + 2\gamma }}\).

Case (4): \(x^{*} = \xi\) while \(y^{*}\) is at the point \(\{ 0,\xi \}\) or satisfied \(\frac{\partial \pi }{{\partial y}} = 0\).

  1. (a)

    \(y^{*}\) is satisfied \(\frac{\partial \pi }{{\partial y}} = 0\). Then we can get.

$$\begin{gathered} \frac{\partial \pi }{{\partial y}} = - 2\beta \alpha_{2} (u_{2} - p_{2} ){/}\gamma^{2} - 2\beta \alpha_{2}^{2} y{/}\gamma^{2} - c_{2} y{ + }\beta \alpha_{2} (u_{1} + \alpha_{1} \xi ){/}\gamma { + }\alpha_{2} (p_{2} - c_{0} )(1 - \rho_{0} \xi ){/}\gamma = 0 \hfill \\ \frac{\partial \pi }{{\partial p_{2} }} = 2\beta (u_{2} + \alpha_{2} y - p_{2} ){/}\gamma^{2} - (u_{1} + \alpha_{1} \xi ){/}\gamma { + }(1 - \rho_{0} \xi )(u_{2} + \alpha_{2} y - p_{2} ){/}\gamma - (p_{2} - c_{0} )(1 - \rho_{0} \xi ){/}\gamma = 0 \hfill \\ \end{gathered}$$

Solving the above equations, we have

$$y^{*} = \frac{{\beta \alpha_{2} (u_{1} + \alpha_{1} \xi ) + (\alpha_{2} u_{2} - \alpha_{2} c_{0} )(1 - \rho_{0} \xi )}}{{{{2c_{2} \gamma + 2\beta c_{2} } \mathord{\left/ {\vphantom {{2c_{2} \gamma + 2\beta c_{2} } {(1 - \rho_{0} \xi ) - \alpha_{2}^{2} (1 - \rho_{0} \xi )}}} \right. \kern-0pt} {(1 - \rho_{0} \xi ) - \alpha_{2}^{2} (1 - \rho_{0} \xi )}}}},\quad p_{2}^{*} = \frac{{ - c_{2} \gamma y^{*} }}{{\alpha_{2} (1 - \rho_{0} \xi )}} + u_{2} + \alpha_{2} y^{*} .$$
  1. (b)

    \(y^{*} \in \{ 0,\xi \}\). From \(\frac{\partial \pi }{{\partial p_{2} }} = - (u_{1} + \alpha_{1} \xi ){/}\gamma + 2(u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma^{2} + (1 - \rho_{0} \xi )(u_{2} + \alpha_{2} y^{*} - 2p_{2} + c_{0} ){/}\gamma = 0\), we have

$$p_{2}^{*} = \frac{{2\beta (u_{2} + \alpha_{2} y^{*} ) - \gamma (u_{1} + \alpha_{1} \xi ){ + }(1 - \rho_{0} \xi )(u_{2} + \alpha_{2} y^{*} + c_{0} )\gamma }}{{2\beta + 2\gamma (1 - \rho_{0} \xi )}}.$$

Proof of proposition 3

When \(u_{1} + \alpha_{1} x^{*} - p_{1} > {{(u_{2} + \alpha_{2} y^{*} - p_{2} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y^{*} - p_{2} )} \gamma }} \right. \kern-0pt} \gamma }\) and \(y^{*} { = }y_{1}\), we first get.

\(\frac{{\partial f^{\prime}(y^{*} )}}{{\partial u_{1} }} = \beta \alpha_{1} \alpha_{2} \rho_{0} (\beta \alpha_{1}^{2} - 2c_{1} )\frac{{(u_{2} + \alpha_{2} y^{*} - c_{0} )}}{{4\gamma (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial u_{1} }} = 0\).

Because \(y_{1}\) is the maxima point, we have \(\frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }} < 0\). Note that \(n_{2}^{*} = {{(u_{2} + \alpha_{2} y^{*} - p_{2}^{*} )} \mathord{\left/ {\vphantom {{(u_{2} + \alpha_{2} y^{*} - p_{2}^{*} )} \gamma }} \right. \kern-0pt} \gamma } > 0\) and \(p_{2}^{*} { = }\frac{{u_{2} + c_{0} + \alpha_{2} y^{*} }}{2}\), we have \(u_{2} - c_{0} + \alpha_{2} y^{*} > 0\). Due to the basic assumption \(\beta \alpha_{1}^{2} - 2c_{1} { < }0\). Hence we have \(\frac{{\partial y^{*} }}{{\partial u_{1} }} < 0\).

Similarly, because \(\frac{{\partial f^{\prime}(y^{*} )}}{{\partial c_{2} }} = - y^{*} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial c_{2} }} = 0\), we can similarly have \(\frac{{\partial y^{*} }}{{\partial c_{2} }} < 0\).

Further, we can obtain the following properties. From.

$$\frac{{\partial f^{\prime}(y^{*} )}}{{\partial c_{0} }} = \frac{{3\alpha_{2} \rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} - c_{0} + \alpha_{2} y^{*} )^{2} + \frac{{\beta \alpha_{1} \alpha_{2} u_{1} \rho_{0} }}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial c_{0} }} = 0,$$

we can easily verify that \(\frac{{\partial y^{*} }}{{\partial c_{0} }} < 0\). Similarly, from.

$$\frac{{\partial f^{\prime}(y^{*} )}}{{\partial u_{2} }} = \frac{{ - 3\alpha_{2} \rho_{0}^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} + \alpha_{2} y - c_{0} )^{2} - \frac{{\beta \alpha_{1} \alpha_{2} u_{1} \rho_{0} }}{{4\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial u_{2} }} = 0,$$

we can easily verify that \(\frac{{\partial y^{*} }}{{\partial u_{2} }} > 0\).

And from

$$\frac{{\partial f^{\prime}(y^{*} )}}{{\partial \rho_{0} }} = \frac{{ - \alpha_{2} \rho_{0} }}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} + \alpha_{2} y - c_{0} )^{3} - \beta \alpha_{1} \alpha_{2} u_{1} (\beta \alpha_{1}^{2} - 2c_{1} ))\frac{{(u_{2} + \alpha_{2} y - c_{0} )}}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )^{2} }} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial \rho_{0} }} = 0,$$

we have \(\frac{{\partial y^{*} }}{{\partial \rho_{0} }} > 0\).

And from

$$\begin{aligned} \frac{{\partial f^{\prime}(y^{*} )}}{\partial \gamma } = & \frac{{\alpha_{2} \rho_{0}^{2} }}{{2\gamma^{3} (\beta \alpha_{1}^{2} - 2c_{1} )}}(u_{2} + \alpha_{2} y^{*} - c_{0} )^{3} \\ \quad & + \frac{{(\beta \alpha_{1} \alpha_{2} u_{1} \rho_{0} - \alpha_{2} (\beta \alpha_{1}^{2} - 2c_{1} ))(u_{2} - c_{0} + \alpha_{2} y^{*} )}}{{2\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}} \\ \quad & + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{\partial \gamma } = 0, \\ \end{aligned}$$

we have \(\frac{{\partial y^{*} }}{\partial \gamma } < 0\).

And from

$$\begin{aligned} \frac{{\partial f^{\prime}(y^{*} )}}{{\partial \alpha_{2} }} = & \frac{{ - \rho_{0}^{2} (u_{2} - c_{0} + \alpha_{2} y^{*} )^{3} - 3\rho_{0}^{2} \alpha_{2} y^{*} (u_{2} - c_{0} + \alpha_{2} y^{*} )^{2} }}{{4\gamma^{2} (\beta \alpha_{1}^{2} - 2c_{1} )}} \\ \quad & - \frac{{(u_{2} - c_{0} + \alpha_{2} y^{*} )(\beta \alpha_{1} u_{1} \rho_{0} - (\beta \alpha_{1}^{2} - 2c_{1} ))}}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}} \\ \quad & + \frac{{\alpha_{2}^{2} (\beta \alpha_{1} u_{1} \rho_{0} - (\beta \alpha_{1}^{2} - 2c_{1} ))}}{{4\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}} + \frac{{\partial f^{\prime\prime}(y^{*} )}}{{\partial y^{*} }}\frac{{\partial y^{*} }}{{\partial \alpha_{2} }} = 0, \\ \end{aligned}$$

we can similarly verify that \(\frac{{\partial y^{*} }}{{\partial \alpha_{2} }} > 0\).

Proof of proposition 4

When \(u_{1} + \alpha_{1} x^{*} - p_{1} > (u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma\) and \(y^{*} { = }y_{1}\), taking the derivative of \(x^{*} { = }\frac{{{{\rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )^{2} } \mathord{\left/ {\vphantom {{\rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )^{2} } \gamma }} \right. \kern-0pt} \gamma } - 2\beta \alpha_{1} u_{1} }}{{2\beta \alpha_{1}^{2} - 4c_{1} }}\) with respect to \(u_{1}\), we can obtain \(\frac{{\partial x^{*} }}{{\partial u_{1} }}{ = }{{\left( {{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )} \mathord{\left/ {\vphantom {{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )} \gamma }} \right. \kern-0pt} \gamma }\frac{{\partial y^{*} }}{{\partial u_{1} }} - \beta \alpha_{1} } \right)} \mathord{\left/ {\vphantom {{\left( {{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )} \mathord{\left/ {\vphantom {{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )} \gamma }} \right. \kern-0pt} \gamma }\frac{{\partial y^{*} }}{{\partial u_{1} }} - \beta \alpha_{1} } \right)} {(\beta \alpha_{1}^{2} - 2c_{1} )}}} \right. \kern-0pt} {(\beta \alpha_{1}^{2} - 2c_{1} )}}\). Note that from the proof of Proposition 3 we have \(\frac{{u_{2} - c_{0} + \alpha_{2} y^{*} }}{2} > 0\) and \(\frac{{\partial y^{*} }}{{\partial u_{1} }} < 0\). Hence we have \(\frac{{\partial x^{*} }}{{\partial u_{1} }} > 0\).

Taking the derivative of \(x^{*}\) with respect to \(c_{2}\), we have \(\frac{{\partial x^{*} }}{{\partial c_{2} }} = \frac{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )}}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}\frac{{\partial y^{*} }}{{\partial c_{2} }}\). Because \(\frac{{\partial y^{*} }}{{\partial c_{2} }} < 0\), we can obtain that \(\frac{{\partial x^{*} }}{{\partial c_{2} }} > 0\).

Take the derivative of \(x^{*}\) with respect to \(c_{0}\) and we can have \(\frac{{\partial x^{*} }}{{\partial c_{0} }} = \frac{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )}}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}\left( {\alpha_{2} \frac{{\partial y^{*} }}{{\partial c_{0} }} - 1} \right)\). Because \(\frac{{\partial y^{*} }}{{\partial c_{0} }} < 0\), it’s easy to verify that \(\frac{{\partial x^{*} }}{{\partial c_{0} }} > 0\).

Similarly, as \(\frac{{\partial x^{*} }}{{\partial u_{2} }} = \frac{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )}}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}\left( {1 + \alpha_{2} \frac{{\partial y^{*} }}{{\partial u_{2} }}} \right)\), and \(\frac{{\partial y^{*} }}{{\partial u_{2} }} > 0\), we can obtain \(\frac{{\partial x^{*} }}{{\partial u_{2} }} < 0\). Because \(\frac{{\partial x^{*} }}{{\partial \rho_{0} }} = \frac{1}{{\gamma (2\beta \alpha_{1}^{2} - 4c_{1} )}}\left( {(u_{2} + \alpha_{2} y^{*} - c_{0} )^{2} + 2\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )\frac{{\partial y_{1}^{*} }}{{\partial \rho_{0} }}} \right)\), and \(\frac{{\partial y^{*} }}{{\partial \rho_{0} }} > 0\), we can obtain \(\frac{{\partial x^{*} }}{{\partial \rho_{0} }} < 0\). As \(\frac{{\partial x^{*} }}{\partial \gamma } = \frac{1}{{2\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}\left( { - \frac{{\rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )^{2} }}{\gamma } + 2\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )\frac{{\partial y^{*} }}{\partial \gamma }} \right)\), and \(\frac{{\partial y^{*} }}{\partial \gamma } < 0\), we can obtain \(\frac{{\partial x^{*} }}{\partial \gamma } > 0\). As \(\frac{{\partial x^{*} }}{{\partial \alpha_{2} }} = \frac{{\alpha_{2} \rho_{0} (u_{2} + \alpha_{2} y^{*} - c_{0} )}}{{\gamma (\beta \alpha_{1}^{2} - 2c_{1} )}}\left( {y^{*} + \alpha_{2} \frac{{\partial y^{*} }}{{\partial \alpha_{2} }}} \right)\), and \(\frac{{\partial y^{*} }}{{\partial \alpha_{2} }} > 0\), we can obtain \(\frac{{\partial x^{*} }}{{\partial \alpha_{2} }} < 0\).

Proof of proposition 5

When \(u_{1} + \alpha_{1} x^{*} - p_{1} > (u_{2} + \alpha_{2} y^{*} - p_{2} ){/}\gamma\) and \(y^{*} { = }y_{1}\), taking the derivative of \(p_{1}^{*} = \frac{{u_{1} }}{2} + \frac{1}{2}\alpha_{1} x^{*}\) with respect to \(u_{1}\), we can obtain \(\frac{{\partial p_{1}^{*} }}{{\partial u_{1} }} = \frac{1}{2} + \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial u_{1} }}\). Due to \(\frac{{\partial x^{*} }}{{\partial u_{1} }} > 0\), we have \(\frac{{\partial p_{1}^{*} }}{{\partial u_{1} }} > 0\). Then taking the derivative of \(p_{2}^{*} { = }\frac{{u_{2} + c_{0} + \alpha_{2} y_{1} }}{2}\) with respect to \(u_{1}\), we have \(\frac{{\partial p_{2}^{*} }}{{\partial u_{1} }} = \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{{\partial u_{1} }}\). Due to \(\frac{{\partial y^{*} }}{{\partial u_{1} }} < 0\), we have \(\frac{{\partial p_{2}^{*} }}{{\partial u_{1} }} < 0\).

Similarly, as \(\frac{{\partial p_{1}^{*} }}{{\partial c_{2} }} = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial c_{2} }}\) and \(\frac{{\partial x^{*} }}{{\partial c_{2} }}\) > 0, we can obtain \(\frac{{\partial p_{1}^{*} }}{{\partial c_{2} }} > 0\). As \(\frac{{\partial p_{2}^{*} }}{{\partial c_{2} }} = \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{{\partial c_{2} }}\) < 0, we can obtain \(\frac{{\partial p_{2}^{*} }}{{\partial c_{2} }} < 0\).

Further, we can have the following properties. Taking the derivative of \(p_{1}^{*} = \frac{{u_{1} }}{2} + \frac{1}{2}\alpha_{1} x^{*}\) with respect to \(c_{0}\), we can obtain \(\frac{{\partial p_{1}^{*} }}{{\partial c_{0} }} = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial c_{0} }}\). Due to \(\frac{{\partial x^{*} }}{{\partial c_{0} }} > 0\), we have \(\frac{{\partial p_{1}^{*} }}{{\partial c_{0} }} > 0\). Similarly, because \(\frac{{\partial y^{*} }}{{\partial c_{0} }} < 0\), \(\frac{{\partial x^{*} }}{\partial \gamma } > 0\), \(\frac{{\partial y^{*} }}{\partial \gamma } > 0\), \(\frac{{\partial x^{*} }}{{\partial u_{2} }} < 0\), \(\frac{{\partial x^{*} }}{{\partial \rho_{0} }} < 0\), \(\frac{{\partial y^{*} }}{{\partial \rho_{0} }} > 0\), \(\frac{{\partial x^{*} }}{{\partial \alpha_{2} }} < 0\), \(\frac{{\partial y^{*} }}{{\partial \alpha_{2} }} > 0\), we can obtain that \(\frac{{\partial p_{2}^{*} }}{{\partial c_{0} }} = \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{{\partial c_{0} }} < 0\),\(\frac{{\partial p_{1}^{*} }}{\partial \gamma } = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{\partial \gamma } > 0\), \(\frac{{\partial p_{2}^{*} }}{\partial \gamma } = \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{\partial \gamma } > 0\), \(\frac{{\partial p_{1}^{*} }}{{\partial u_{2} }} = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial u_{2} }} < 0\), \(\frac{{\partial p_{2}^{*} }}{{\partial u_{2} }} = \frac{1}{2} + \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{{\partial u_{2} }} > 0\), \(\frac{{\partial p_{1}^{*} }}{{\partial \rho_{0} }} = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial \rho_{0} }} < 0\), \(\frac{{\partial p_{2}^{*} }}{{\partial \rho_{0} }} = \frac{{\alpha_{2} }}{2}\frac{{\partial y^{*} }}{{\partial \rho_{0} }} > 0\), \(\frac{{\partial p_{1}^{*} }}{{\partial \alpha_{2} }} = \frac{1}{2}\alpha_{1} \frac{{\partial x^{*} }}{{\partial \alpha_{2} }} < 0\), \(\frac{{\partial p_{2}^{*} }}{{\partial \alpha _{2} }} = \frac{1}{2}\left( {y_{1} + \alpha _{2} \frac{{\partial y^{*} }}{{\partial \alpha _{2} }}} \right){\text{ > }}0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Tang, Y. Optimal investment and pricing strategies of online–offline model for mobile health provider. Electron Commer Res (2023). https://doi.org/10.1007/s10660-023-09766-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10660-023-09766-6

Keywords

Navigation