Skip to main content
Log in

Characterization and nematicidal potential of copper, iron and zinc nanoparticles synthesized from Tridax procumbens L. Extract on Meloidogyne incognita infected cabbage plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 15 December 2023

This article has been updated

Abstract

Copper, iron and zinc nanoparticles (NPs) were synthesized with aqueous extract of Tridax procumbens. The NPs were characterized with UV–Vis, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDX). The maximum absorbance for Cu, Fe and Zn NPs occurred at 300, 318 and 306 nm respectively. Prominent bands on the FTIR spectra established that phyto-compounds in T. procumbens extract are creditable for the reduction and stabilizing process to produce particles ranging from 2.98–100 nm. The nanoparticles were evaluated for their nematicidal activities in field trials on cabbage plants in comparison with the standard nematicide carbofuran. Potent nematicidal activity was notably displayed by the NPs at 100 ppm on Meloidogyne incognita population in 200 cc of soil, number of eggs and gall index. Significantly higher yield was recorded in cabbage plants treated with T. procumbens CuNP contrary to other NPs and untreated cabbage plants. CuNPs can be applied in M. incognita management in place of synthetic nematicides for sustainable cabbage production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Abdellatif, K. F., Abdelfattah, R. H., & El-Ansary, M. S. M. (2016). Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iranian Journal of Biotechnology, 14(4), 250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adelere, I. A., & Lateef, A. (2016). A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes and pigments. Nanotechnology Reviews, 5(6), 567–587. https://doi.org/10.1515/ntrev-2016-0024

    Article  CAS  Google Scholar 

  • Ahn, J.-M., Eom, H.-J., Yang, X., Meyer, J. N., & Choi, J. (2014). Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode. Caenorhabditis Elegans, Chemosphere, 108, 343–352. https://doi.org/10.1016/j.chemosphere.2014.01.078

    Article  CAS  PubMed  Google Scholar 

  • Ali, M., Ravinder, E., & Ramachandram, R. (2001). A new flavonoid from the aerial parts of Tridax procumbens. Fitoterapia, 72(3), 313–315. https://doi.org/10.1016/S0367-326X(00)00296-3.PMID11295316

    Article  CAS  PubMed  Google Scholar 

  • Anwar, S. A., & McKenry, M. V. (2010). Incidence and Reproduction of Meloidogyne incognita on Vegetable Crop Genotypes. Pakistan J. Zool., 42(2), 135–141.

    Google Scholar 

  • Asmat, S., Husain, Q., & Khan, M. S. A. (2018). polypyrrole-methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: Preparation, activity, stability and molecular docking investigations. New Journal of Chemistry, 42, 91–102.

    Article  CAS  Google Scholar 

  • Azeez, L., Lateef, A., & Adebisi, S. A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience, 7(1–2), 59–66. https://doi.org/10.1007/s13204-017-0546-2

    Article  CAS  Google Scholar 

  • Azeez, L., Lateef, A., Wahab, A. A., Rufai, M. A., Salau, A. K., Ajayi, I. O., Ajayi, E. M., Maryam, A. K., & Adebisi, B. (2019). Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: Its antiphytopathogenic and hepatoprotective potentials. Plant Physiology and Biochemistry, 136, 109–117. https://doi.org/10.1016/j.plaphy.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  • Azeez, L., Adejumo, A. L., Ogunbode, S. M., Lateef, A., & Adetoro, R. O. (2020). Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health. Journal of Food Measurement and Characterization, 14(4), 2185–2195. https://doi.org/10.1007/s11694-020-00465-6

    Article  Google Scholar 

  • Azeez, L., Lateef, A., Adetoro, R. O., & Adeleke, A. E. (2021). Responses of Moringa oleifera to alteration in soil properties induced by calcium nanoparticles (CaNPs) on mineral absorption, physiological indices and photosynthetic indicators. Beni-Suef University Journal of Basic and Applied Sciences, 10, 39. https://doi.org/10.1186/s43088-021-00128-5

    Article  Google Scholar 

  • Bello, T. T., Coyne, D. L., Rashidifard, M., & Fourie, H. (2020). Abundance and diversity of plant parasitic nematodes associated with watermelon in Nigeria, with focus on Meloidogyne spp. Nematology, 22(7), 781–797.

    Article  CAS  Google Scholar 

  • Bridge, J., & Page, S. L. J. (1980). Estimation of root-knot nematode infestation levels on roots using a ration chart. Tropical Pest management, 26(3), 296–298. https://doi.org/10.1080/09670878009414416

    Article  Google Scholar 

  • Catherine, C. I., Jude, C. I., & Mercy, O. I. (2015). Phytochemical Composition of Tridax procumbens Linn Leaves: Potential as a Functional Food. Food and Nutrition Sciences, 6, 992–1004.

    Article  Google Scholar 

  • Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Rev Phytopathology., 40, 221–249.

    Article  CAS  Google Scholar 

  • Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Bleve-Zacheo, T., D’Alessio, M., Zambonin, P. G., & Traversa, E. (2005). Copper nanoparticles/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17, 5255–5262.

    Article  CAS  Google Scholar 

  • Corona, A. T., Sánchez, M. A. L., Perez, J. L. H., Zanella, R., Mora, J. I. R., & Cuchillo, O. V. (2018). Green synthesis of copper (0) nanoparticles with cyanidine-O-3-glucoside and its strong antimicrobial activity. Material. Letters., 211, 266.

    Article  Google Scholar 

  • Coyne, D. L., Nicol, J. M., & Claudius-Cole, B. (2007). Practical plant nematology: a field and laboratory guide. Cotonou, Benin: SPIPM Secretariat, International Institute of Tropical Agriculture (IITA).

    Google Scholar 

  • Cromwell, W. A., Yang, J., Starr, J. L., & Young-Ki, J. (2014). Nematicidal effects of silver nano particles on root-knot nematode in Bermudagrass. Journal of Nematology., 46(3), 261–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elegbede, J. A., & Lateef, A. (2019). Green synthesis of silver (Ag), gold (Au) and silver-gold (Ag-Au) alloy nanoparticles: A review on recent advances, trends and biomedical applications. In D. K. Verma, M. R. Goyal, & H. A. R. Suleria (Eds.), Nanotechnology and Nanomaterial Applications in Food, Health and Biomedical Sciences (pp. 3–89). https://doi.org/10.1201/9780429425660-1

    Chapter  Google Scholar 

  • Esteban-Cubillo, A., Pecharroma′n, C., Aguilar, E., Santaren, J., & Moya, J. S. (2006). Antibacterial of copper monodispersed nanoparticles into sepiolite. Journal of Materials Science, 41, 5208.

    Article  CAS  Google Scholar 

  • Fabiyi, O. A. (2021). Sustainable Management of Meloidogyne incognita Infecting Carrot: Green synthesis of silver nanoparticles with Cnidoscolus aconitifolius: (Daucus carota). Vegetos., 34(2), 277–285.

    Article  Google Scholar 

  • Fabiyi, O. A., Claudius-Cole, A. O., Olatunji, G. A., Abubakar, D. O., & Adejumo, O. A. (2021). Evaluation of the in vitro Response of Meloidogyne incognita to silver nano particle liquid from Agricultural wastes. Agrivita Journal of Agricultural Sciences., 43(3), 524–534.

    Google Scholar 

  • Fakhari, S., Jamzad, M., & Fard, H. K. (2019). Green synthesis of zinc oxide nanoparticles: A comparison. Green Chemistry Letters and Reviews, 12(1), 19–24. https://doi.org/10.1080/17518253.2018.1547925

    Article  CAS  Google Scholar 

  • Gamboa-Leon, R., Vera-Ku, M., Peraza-Sanchez, S. R., Ku-Chulim, C., Horta-Baas, A., & Rosado-Vallado, M. (2014). Antileishmanial activity of a mixture of Tridax procumbens and Allium sativumin mice. Parasite, 21, 15. https://doi.org/10.1051/parasite/2014016.PMC3980668.PMID24717526

    Article  PubMed  PubMed Central  Google Scholar 

  • Grubben, G. J. H., & Denton, O. A. (2004). Plant resource of Tropical Africa and vegetables (p. 668). Wageningen, Netherlands / Backlmys Publishers, Leiden, Netherlands / CTA Wageningen, Netherlands.

    Google Scholar 

  • Hussey, R. S., & Baker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp. Plant Disease Reporter, 57, 1025–1028.

    Google Scholar 

  • Iqbal, J., Abbasi, B. A., Yaseen, T., et al. (2021). Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci Rep, 11, 20988. https://doi.org/10.1038/s41598-021-99839-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques, M. T., Oliveira, J. L., Campos, E. V., Fraceto, L. F., & Ávila, D. S. (2017). Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 139, 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S., Jain, A., Kachhawah, P., & Devra, V. (2015). Synthesis and size control of copper nanoparticles and their catalytic application. Transactions of the Nonferrous Metals Society of China, 25(2015), 3995.

    Article  CAS  Google Scholar 

  • Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal, 13(3), 214–231. https://doi.org/10.3923/ppj.2014.214.231

    Article  CAS  Google Scholar 

  • Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., & Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 8, 1507–1516. https://doi.org/10.2147/IJN.S43309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M., Khan, A. U., Bogdanchikova, N., & Garibo, D. (2021). Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne incognita, plant pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules, 26(9), 2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A., Mfarrej, M. F. B., Danish, M., Shariq, M., Khan, M. F., Ansari, M. S., Hashem, M., Alamri, S., & Ahmad, F. (2022). Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode. Meloidogyne Incognita, Green Chemistry Letters and Reviews, 15(3), 491–507. https://doi.org/10.1080/17518253.2022.2096416

    Article  CAS  Google Scholar 

  • Lakshminarayanan, S., Furhana Shereen, M., Niraimathi, K. L., Brindha, P., & Arumugam, A. (2021). One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports., 11, 8643. https://doi.org/10.1038/s41598-021-87960-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lateef, A., Folarin, Bolaji I., Oladejo, Suliat M., Akinola, Paul O., Beukes, Lorika S., & Gueguim-Kana, Evariste B. (2018). Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L leaf extract. Preparative Biochemistry and Biotechnology, 48(7), 646–652. https://doi.org/10.1080/10826068.2018.1479864

    Article  CAS  PubMed  Google Scholar 

  • Lateef, A., Azeez, M. A., Suaibu, O. B., & Adigun, G. O. (2021). A decade of nanotechnology research in Nigeria (2010–2020): A scientometric analysis. Journal of Nanoparticle Research, 23, 211. https://doi.org/10.1007/s11051-021-05322-1

    Article  Google Scholar 

  • Lim, D., Roh, J. Y., Eom, H. J., Choi, J. Y., Hyun, J., & Choi, J. (2012). Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 31(3), 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Wang, G., Liu, J., Nan, K., Zhang, J., Guo, L., & Liu, Y. (2021). Green synthesis of copper nanoparticles using Cinnamomum zelanicum extract and its applications as a highly efficient antioxidant and anti-human lung carcinoma. Journal of Experimental Nanoscience, 16(1), 410–423. https://doi.org/10.1080/17458080.2021.1991577

    Article  CAS  Google Scholar 

  • Marschner, H., Marslin, G., Sheeba, C. J., et al. (2017). Mineral nutrition of higher plants. Front Plant. Science., 8, 832.

    Google Scholar 

  • Mennan, S., & Handoo, Z. A. (2006). Plant-parasitic nematodes associated with cabbages (Brassica spp.) in Samsun (Middle Black Sea Region). Turkey. Nematropica., 36, 99–104.

    Google Scholar 

  • Muhammad, S. A., & Muhammad, J. (2002). A bis-bithiophene from Tridax procumbens L. (Asteraceae). Natural Product Letters, 16, 217–221.

    Article  Google Scholar 

  • Navin, A. I., Harsh, V. D., Navpreet, K., & Rahul, G. (2014). Tridax procumbens a multi-useful weed: A review. Journal of Advanced Oral Research., 5, 14–16.

    Article  Google Scholar 

  • Pathak, A. K., Saraf, S., & Dixit, V. K. (1991). Hair growth promoting activity of Tridax procumbens. Fitoterapia, 62, 307–313.

    Google Scholar 

  • Petchi, R. R., Vijaya, C., & Parasuraman, S. (2013). Anti-arthritic activity of ethanolic extract of Tridax procumbens (Linn.) in Sprague Dawley rats. Pharmacognosy Research., 5(2), 113–117. https://doi.org/10.4103/0974-8490.110541.PMC3685759.PMID23798886

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhu, Y., Venkateswara Rao, K., Sesha Sai, V., & Pavani, T. (2017). A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. Journal of Saudi Chemical Society, 21(2), 180–185. https://doi.org/10.1016/j.jscs.2015.04.002

    Article  CAS  Google Scholar 

  • Radha, K. V., & Kalyanaraman, G. (2019). Synthesis, Characterization and application ofCopper Nano-Particles: A Review. International Journal of Engineering Research and Technology., 8(3), 412–421.

    Google Scholar 

  • Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., & Reddy, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik, 154, 593.

    Article  CAS  Google Scholar 

  • Ramasubburayan, R., Sumathi, S., Prakash, S., Ramkumar, V. S., Titus, S., Immanuel, G., & Palavesam, A. (2017). Synthesis of nano silver by a marine epibiotic bacterium Bacillus vallismortis and its potent eco-friendly antifouling properties. Environmental Nanotechnology, Monitoring & Management, 8, 112–120. https://doi.org/10.1016/j.enmm.2017.06.005

    Article  Google Scholar 

  • Roh, J. Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D. Y., & Choi, J. (2009). Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmental Science & Technology, 43(10), 3933–3940.

    Article  CAS  Google Scholar 

  • Rufus, A., Sreeju, N., & Philip, D. (2016). Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Advances, 6, 94206–94217.

    Article  CAS  Google Scholar 

  • Sabry, A. K. H. (2019). Role of nanotechnology applications in plant-parasitic nematode control. Nanobiotechnology Applications in Plant Protection:, 2, 223–240. https://doi.org/10.1007/978-3-030-13296-5_12

    Article  Google Scholar 

  • Sameen, A., Fathima, S., Ramlal, S., Kumar, S., & Khanum, F. (2014). Nanopackaging of silver using spice extract and their characterization. Science, Technology and Arts Research Journal, 3(3), 52–56. https://doi.org/10.4314/star.v3i3.9

    Article  CAS  Google Scholar 

  • Sanjay, M. J., Raju, G., Selvam, C., Himanshu, M., Amit, S., & Taj, K. (2011). Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitoterapia, 82, 173–177.

    Article  Google Scholar 

  • Selim, Y. A., Azb, M. A., & RagabAbdel-Azim, I. M. H. M. (2020). Green synthesis of Zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific Reports., 10, 3445. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikora, R. A., & Fernandez, E. (2005). Nematode parasites of vegetables. Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture (2nd ed., pp. 319–392). CAB International. https://doi.org/10.1079/9780851997278.0319

    Chapter  Google Scholar 

  • Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A Threat to Sustainability of Agriculture. Proc Environ Sci., 29, 215–216.

    Article  Google Scholar 

  • Singh, J., et al. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal Nanobio-Technol., 16, 1–24.

    Google Scholar 

  • Smith, M. (1995). Report on the expert consultation on procedures for revision of FAO guidelines for predictions of crop water requirement. Rome FAO, 45p. Soil types effects on Growth and dry matter production of spring onion. Journal of Horticultural Sciences and Technology., 77, 340–345.

    Google Scholar 

  • Sreeramulu, N., Sateesh, S., Ragan, A., & Vatsavaya, S. R. (2013). Ethno-botanico-medicine for common human ailments in Nalgonda and Warangal districts of Telangana, Andhra Pradesh. India. Annals of Plant Sciences., 2(7), 220–229.

    Google Scholar 

  • Sunil, C., Kulathivel, T. M., & Agastian, P. (2012). Phytochemical and antibacterial studies of leaves of Tridax procumbens L. Asian Pacific Journal of Tropical Biomedicine., 2, S159–S161.

    Article  Google Scholar 

  • Tamileswari, R., Haniff, N. M., & Jesurani, S., Sr. (2015). Green synthesis of silver nanoparticles using Brassica oleracea (cauliflower) and Brassica oleracea capitata (cabbage) and the analysis of antimicrobial activity. IJERT International Journal of Environmental Research and Technology., 4, 1071–1074.

    Google Scholar 

  • Tauseef, A., Hisamuddin, Gupta, J., Rehman, A., & Uddin, I. (2021). Differential Response of Cowpea Towards the CuO Nanoparticles Under Meloidogyne incognita Stress. South African Journal of Botany, 139, 175–182.

    Article  CAS  Google Scholar 

  • Tiwari, M., Jain, P., Hariharapura, R. C., Narayan, K., Bhat, U., Udupa, N., & Rao, J. V. (2016). Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Bio-Chem., 51, 1348.

    Article  CAS  Google Scholar 

  • Tryfon, P., Kamou, N. N., Ntalli, N., StefanosMourdikoudis, S., Karamanoli, K. D., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2022). Coated Cu doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. Nanoimpact. https://doi.org/10.1016/j.impact.2022.100430

    Article  PubMed  Google Scholar 

  • Tsyusko, O. V., Unrine, J. M., Spurgeon, D., Blalock, E., Starnes, D., Tseng, M., & Bertsch, P. M. (2012). Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environmental science & technology, 46(7), 4115–4124.

    Article  CAS  Google Scholar 

  • Umuhoza, J. N. K., Sylvestre, H., & Philippe, S. (2014). Nutritional quality of carrot (Daucus carota L) as influenced by farm yard manure. World Journal of Agricultural Sciences., 2(5), 102–107.

    Google Scholar 

  • Varsharani, V. I., Pravin, C. M., & Sushma, R. K. (2022). Phytochemistry and pharmacological aspects of Tridax procumbens (L) A systematic and comprehensive review. Phytomedicine Plus., 2(1), 100199. https://doi.org/10.1016/j.phyplu.2022.100199. ISSN 2667-0313. S2CID 245158659.

    Article  Google Scholar 

  • Velidandi, A., Pabbathi, N. P. P., Dahariya, S., & Baadhe, R. R. (2020). Catalytic and eco-toxicity investigations of bio-fabricated monometallic nanoparticles along with their anti-bacterial, anti-inflammatory, anti-diabetic, anti-oxidative and anti-cancer potentials. Colloid and Interface Science Communications, 38, 100302. https://doi.org/10.1016/j.colcom.2020.100302

    Article  CAS  Google Scholar 

  • Vinod, G., & Nagaraju, S. (2015). Ethnomedicinal, phytochemical constituents and pharmacological activities of Tridax procumbens: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 1–7.

    Google Scholar 

  • Waceke, J. W. (2007). Plant parasitic nematodes associated with cabbages in Kenya. African Crop Science Conference Proceedings, 8, 1071–1074.

    Google Scholar 

  • Whitehead, A. C., & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55, 25–28.

    Article  Google Scholar 

  • Yoon, K. Y., Byeon, J. H., Park, J. H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the. Total Environment., 373, 572–575.

    Article  CAS  PubMed  Google Scholar 

  • Young-Ki, J., Starr, J. L., & Youjun, D. (2013). Use of silver nano particles for nematode control on the Bermuda putting green. Turf Grass and Environmental Research Online., 12(2), 22–24.

    Google Scholar 

  • Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Funct Plant BiolOgy., 36, 409–430.

    Article  CAS  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution., 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatoyin Fabiyi.

Ethics declarations

Competing interest

The authors declare that there is no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabiyi, O., Lateef, A., Gueguim-Kana, E.B. et al. Characterization and nematicidal potential of copper, iron and zinc nanoparticles synthesized from Tridax procumbens L. Extract on Meloidogyne incognita infected cabbage plants. Eur J Plant Pathol 168, 683–695 (2024). https://doi.org/10.1007/s10658-023-02792-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02792-y

Keywords

Navigation