Skip to main content
Log in

The Myshkis 3/2 Theorem and Its Generalizations

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We discuss the well-known Myshkis result on the stability of nonautonomous first-order delay differential equations, providing an extension to the general differential equations with aftereffect, and make comparison with available results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Myshkis A.D., “On solutions of linear homogeneous differential equations of the second order of periodic type with a retarded argument,” Mat. Sb., vol. 28, no. 3, 641–658 (1951).

    MathSciNet  MATH  Google Scholar 

  2. Azbelev N.V. and Simonov P.M., Stability of Differential Equations with Aftereffect, Taylor and Francis, London (2002).

    Book  MATH  Google Scholar 

  3. Yorke J.A., “Asymptotic stability for one dimensional differential-delay equations,” J. Differ. Equ., vol. 7, 189–202 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  4. Amemiya T., “On the delay-independent stability of a delayed differential equation of \( 1 \)st order,” J. Math. Anal. Appl., vol. 142, no. 1, 13–25 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. Malygina V.V., “Stability of solutions of some linear differential equations with aftereffect,” Russian Math. (Iz. VUZ. Matematika), vol. 37, no. 5, 63–75 (1993).

    MathSciNet  MATH  Google Scholar 

  6. Malygina V.V. and Chudinov K.M., “Stability of solutions to differential equations with several variable delays. III,” Russian Math. (Iz. VUZ. Matematika), vol. 57, no. 8, 37–48 (2013).

    MathSciNet  MATH  Google Scholar 

  7. Demidovich B.P., Lectures on the Mathematical Theory of Stability, Nauka, Moscow (1967) [Russian].

    MATH  Google Scholar 

  8. Andronov A.A. and Maier A.G., “Simple linear systems with delay,” Avtomat. i Telemekh., vol. 7, no. 2, 95–106 (1946).

    Google Scholar 

  9. Bellman R.E. and Cooke K.L., Differential-Difference Equations, Academic, London (1963).

    MATH  Google Scholar 

  10. El’sgol’ts L.E. and Norkin S.B., Introduction to the Theory and Application of Differential Equations with Deviating Argument, Academic, New York (1973).

    MATH  Google Scholar 

  11. Daleckii Ju.L. and Krein M.G., Stability of Solutions to Differential Equations in Banach Space, Amer. Math. Soc., Providence (1974).

    Google Scholar 

  12. Krisztin T., “On stability properties for one-dimensional functional differential equations,” Funkcial. Ekvac., vol. 34, no. 2, 241–256 (1991).

    MathSciNet  MATH  Google Scholar 

  13. Ladas G., Sficas Y.G., and Stavroulakis I.P., “Asymptotic behavior of solutions of retarded differential equations,” Proc. Amer. Math. Soc., vol. 88, no. 2, 247–253 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yoneyama T., “On the \( {3/2} \) stability theorem for one-dimensional delay-differential equations,” J. Math. Anal. Appl., vol. 125, no. 1, 161–173 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yoneyama T., “The \( 3/2 \) stability theorem for one-dimensional delay-differential equations with unbounded delay,” J. Math. Anal. Appl., vol. 165, no. 1, 133–143 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. Gusarenko S.A., “Solvability criteria for the problems of the accumulation of perturbations of functional differential equations,” in: Functional Differential Equations, Perm Polytechnic University, Perm (1987), 30–40 [Russian].

  17. Gusarenko S.A. and Domoshnitskii A.I., “Asymptotic and oscillation properties of first-order linear scalar functional-differential equations,” Differ. Equ., vol. 25, no. 12, 1480–1491 (1989).

    MathSciNet  MATH  Google Scholar 

  18. Győri I. and Hartung F., “Stability in delayed perturbed differential and difference equations,” Fields Institute Communications, vol. 29, 181–194 (2001).

    MATH  Google Scholar 

  19. Yoneyama T. and Sugie J., “Perturbing uniformly stable nonlinear scalar delay-differential equations,” Nonlinear Anal., vol. 12, no. 3, 303–311 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. So J.W.-H., Yu J.S., and Chen M.P., “Asymptotic stability for scalar delay differential equations,” Funkcial. Ekvac., vol. 39, no. 1, 1–17 (1996).

    MathSciNet  MATH  Google Scholar 

  21. Cooke K.L. and Yorke J.A., “Some equations modelling growth processes and gonorrhea epidemics,” Math. Biosci., vol. 16, no. 1, 75–101 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  22. Yoneyama T., “On the stability for the delay-differential equation \( \dot{x}(t)=-a(t)f(x(t-r(t))) \),” J. Math. Anal. Appl., vol. 120, no. 1, 271–275 (1986).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The author was supported by the Ministry for Science and Higher Education of the Russian Federation (Grant no. FSNM–2023–0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malygina.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 6, pp. 1248–1262. https://doi.org/10.33048/smzh.2023.64.611

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygina, V.V. The Myshkis 3/2 Theorem and Its Generalizations. Sib Math J 64, 1372–1384 (2023). https://doi.org/10.1134/S0037446623060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623060113

Keywords

UDC

Navigation