Skip to main content
Log in

Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the asymptotic properties of solutions to the mixed problems for the quasilinear nonautonomous first-order hyperbolic systems with two variables in the case of smoothing boundary conditions. We prove that all smooth solutions to the problem for a decoupled hyperbolic system stabilize to zero in finite time independently of the initial data. If the hyperbolic system is coupled then we show that the zero solution to the quasilinear problem is exponentially stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Godunov S.K. and Romenskii E.I., Elements of Continuum Mechanics and Conservation Laws, Springer, New York (2003).

    Book  MATH  Google Scholar 

  2. Rozhdestvenskii B.L. and Yanenko N.N., Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Nauka, Moscow (1978) [Russian].

    Google Scholar 

  3. Godunov S.K., Equations of Mathematical Physics, Nauka, Moscow (1979) [Russian].

    Google Scholar 

  4. Samarskii A.A. and Popov Yu.P., Difference Methods for Solving Problems of Gas Dynamics, URSS, Moscow (2004) [Russian].

    Google Scholar 

  5. Friedrichs K.O., “On the derivation of shallow water theory. I,” Comm. Pure Appl. Math., 109–134 (1948).

  6. Stoker J.J., Water Waves: The Mathematical Theory with Applications, Interscience, New York (1957).

    MATH  Google Scholar 

  7. Kulikovskii A.G. and Lyubimov G.A., Magnetohydrodynamics, Logos, Moscow (2005) [Russian].

    Google Scholar 

  8. Song Jian and Jingyuan Yu, Population System Control, Springer, New York (1988).

    Book  MATH  Google Scholar 

  9. Akramov T.A., “Quantitative and numerical analysis of the model of the reactor with a countercurrent,” in: Mathematical Modeling of Catalytic Reactors, Nauka, Novosibirsk (1989), 195–214 [Russian].

  10. Kovenya V.M., Splitting Algorithms for Solving the Aerohydrodynamic Problems of High Dimension, Sibirsk. Otdel. Ross. Akad. Nauk, Novosibirsk (2014) [Russian].

    Google Scholar 

  11. Yanenko N.N., The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics, Nauka, Novosibirsk (1967) [Russian].

    MATH  Google Scholar 

  12. Kulikovskii A.G., Pogorelov N.B., and Semenov A.Yu., Mathematical Aspects of Numerical Solution of Hyperbolic Systems of Equations, Chapman and Hall/CRC, London and New York (2019).

    MATH  Google Scholar 

  13. Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin and Heidelberg (2016).

    Book  MATH  Google Scholar 

  14. Russell D., “Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,” SIAM Review, vol. 20, 639–739 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  15. Bastin G. and Coron J.-M., Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Birkhäuser and Springer, Cham (2016) (Progress in Nonlinear Differential Equations and Their Applications; vol. 88).

    Book  MATH  Google Scholar 

  16. Balakrishnan A.V., “On superstability of semigroups,” in: Systems Modelling and Optimization. Proceedings of the 18th IFIP TC7 Conference on System Modelling and Optimization, New York, Chapman and Hall (1999), 12–19 (CRC Research Notes in Mathematics).

  17. Balakrishnan A.V., “Superstability of systems,” Appl. Math. Comput., vol. 164, no. 4, 321–326 (2005).

    MathSciNet  MATH  Google Scholar 

  18. Kmit I. and Lyul’ko N., “Perturbation of superstable linear hyperbolic problems,” J. Math. Anal. Appl., vol. 460, 838–862 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhat S.P. and Bernstein D.S., “Finite-time stability of continuous autonomous systems,” SIAM J. Control. Optim., vol. 38, 751–766 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. Arguchintsev A.V., Optimal Control by Hyperbolic Systems, Fizmatlit, Moscow (2007) [Russian].

    MATH  Google Scholar 

  21. Gugat M., Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems, Birkhäuser, Basel (2015).

    Book  MATH  Google Scholar 

  22. Coron J.-M. and Nguyen H.-M., “Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space,” ESAIM Control Optim. Calc. Var., vol. 26, 24 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  23. Tikhonov I.V. and Vu Nguyen Son Tung, “The solvability of the linear inverse problem for the evolution equation with a superstable semigroup,” RUDN J. of MIPh, vol. 26, no. 2, 103–118 (2018).

    Google Scholar 

  24. Ëltysheva N.A., “On qualitative properties of solutions of some hyperbolic systems on the plane,” Mat. Sb., vol. 135, no. 2, 186–209 (1988).

    MathSciNet  MATH  Google Scholar 

  25. Kmit I. and Lyul’ko N., “Finite time stabilization of nonautonomous first-order hyperbolic systems,” SIAM J. Control. Optim., vol. 59, no. 5, 3179–3202 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. Kmit I. and Hörmann G., “Systems with singular non-local boundary conditions: reflection of singularities and delta waves,” J. Anal. Appl., vol. 20, no. 3, 637–659 (2001).

    MathSciNet  MATH  Google Scholar 

  27. Kmit I., “Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems,” Intern. J. Dynamic Systems Differ. Equ., vol. 1, no. 3, 191–195 (2008).

    MathSciNet  MATH  Google Scholar 

  28. Abolinya V.E. and Myshkis A.D., “A mixed problem for an almost linear hyperbolic system on the plane,” Mat. Sb., vol. 50, no. 4, 423–442 (1960).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was carried out within the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lyul’ko.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 6, pp. 1229–1247. https://doi.org/10.33048/smzh.2023.64.610

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyul’ko, N.A. Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems. Sib Math J 64, 1356–1371 (2023). https://doi.org/10.1134/S0037446623060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623060101

Keywords

UDC

Navigation