Skip to main content
Log in

\( BV \)-Spaces and the Bounded Composition Operators of \( BV \)-Functions on Carnot Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the homeomorphisms that induce the bounded composition operators of \( BV \)-functions on Carnot groups. We characterize continuous \( BV_{\operatorname{loc}} \)-mappings on Carnot groups in terms of the variation on integral lines and estimate the variation of the \( BV \)-derivative of the composition of a \( C^{1} \)-function and a continuous \( BV_{\operatorname{loc}} \)-mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The precise description of the \( BV \)-derivative of composition is available for Euclidean spaces; see [9, 14].

  2. The finiteness of distortion is introduced for mappings of Sobolev class: \( \varphi\in W^{1}_{p,\operatorname{loc}}(𝔾,𝔾) \) has finite distortion whenever on the zero set \( Z \) of the Jacobian we have \( D\varphi(x)=0 \) for almost all \( x\in Z \). For more detail see [1], for instance.

References

  1. Vodopyanov S.K., “The regularity of inverses to Sobolev mappings and the theory of \( \mathcal{Q}_{q,p} \)-homeomorphisms,” Sib. Math. J., vol. 61, no. 6, 1002–1038 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  2. Folland G.B. and Stein E.M., Hardy Spaces on Homogeneous Groups, Princeton University, Princeton (1982) (Princeton Math. Notes; vol. 28).

    MATH  Google Scholar 

  3. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989) [French].

    Article  MathSciNet  MATH  Google Scholar 

  4. Korányi A. and Reimann H.M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., vol. 111, no. 1, 1–87 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin and Heidelberg (2007) (Springer Monogr. Math.).

    MATH  Google Scholar 

  6. Vodopyanov S.K., “\( \mathcal{P} \)-Differentiability on Carnot groups in various topologies and related topics,” in: Proceedings on Analysis and Geometry, Sobolev Institute of Mathematics, Novosibirsk (2000), 603–670.

  7. Evans L.C. and Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC, Boca Raton (1992).

    MATH  Google Scholar 

  8. Federer H., Geometric Measure Theory, Springer, Berlin, Heidelberg, New York (1969).

    MATH  Google Scholar 

  9. Ambrosio L., Fusco N., and Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford University, Oxford (2000).

    Book  MATH  Google Scholar 

  10. Garofalo N. and Nhieu D.M., “Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces,” Comm. Pure Appl. Math., vol. 49, no. 10, 1081–1144 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ambrosio L., “Metric space valued functions of bounded variation,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), vol. 17, no. 3, 439–478 (1990).

    MathSciNet  MATH  Google Scholar 

  12. Vodopyanov S.K. and Pupyshev I.M., “Whitney-type theorems on extension of functions on Carnot groups,” Sib. Math. J., vol. 47, no. 4, 601–620 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. Vodopyanov S.K. and Ukhlov A.D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Siberian Adv. Math., vol. 14, no. 4, 78–125 (2004).

    MathSciNet  MATH  Google Scholar 

  14. Volpert A.I., “Spaces \( BV \) and quasilinear equations,” Mat. Sb., vol. 73, no. 2, 255–302 (1967).

    MathSciNet  Google Scholar 

  15. Bogachev V.I., Fundamentals of Measure Theory. Vol. 1, Nauchno-Issled. Tsentr “Regulyarnaya i Khaoticheskaya Dinamika”, Moscow and Izhevsk (2003) [Russian].

    Google Scholar 

  16. Magnani V., Elements of Geometric Measure Theory on Sub-Riemannian Groups, Scuola Normale Superiore, Pisa (2002).

    MATH  Google Scholar 

  17. Kleprlík L., Composition Operator for Functions of Bounded Variation [Preprint]. arXiv:2001.01657 (2020).

    Google Scholar 

Download references

Acknowledgment

The author is grateful to S.K. Vodopyanov for his attention during the preparation of this article.

Funding

The work was supported by the Mathematical Center in Akademgorodok under Agreement no. 07–15–2022–281 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sboev.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 6, pp. 1304–1326. https://doi.org/10.33048/smzh.2023.64.614

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sboev, D.A. \( BV \)-Spaces and the Bounded Composition Operators of \( BV \)-Functions on Carnot Groups. Sib Math J 64, 1420–1438 (2023). https://doi.org/10.1134/S0037446623060149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623060149

Keywords

UDC

Navigation