Skip to main content
Log in

The Quasi-Two-Dimensional Coefficient Inverse Problem for the Wave Equation in a Weakly Horizontally Inhomogeneous Medium with Memory

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We present the inverse problem of successive determination of the two unknowns that are a coefficient characterizing the properties of a medium with weakly horizontal inhomogeneity and the kernel of an integral operator describing the memory of the medium. The direct initial-boundary value problem involves the zero data and the Neumann boundary condition. The trace of the Fourier image of a solution to the direct problem on the boundary of the medium serves as additional information. Studying inverse problems, we assume that the unknown coefficient is expanded into an asymptotic series in powers of a small parameter. Also, we construct some method for finding the coefficient that accounts for the memory of the environment to within an error of order \( O(\varepsilon^{2}) \). At the first stage, we determine a solution to the direct problem in the zero approximation and the kernel of the integral operator, while the inverse problem reduces to an equivalent problem of solving the system of nonlinear Volterra integral equations of the second kind. At the second stage, we consider the kernel given and recover a solution to the direct problem in the first approximation and the unknown coefficient. In this case, the solution to the equivalent inverse problem agrees with a solution to the linear system of Volterra integral equations of the second kind. We prove some theorems on the unique local solvability of the inverse problems and present the results of numerical calculations of the kernel and the coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Romanov V.G., Inverse Problems of Mathematical Physics, VNU Science, Utrecht (1987).

    Google Scholar 

  2. Lorenzi A. and Sinestrari E., “An inverse problem in the theory of materials with memory. I,” Nonlinear Analysis: Theory, Methods and Applications, vol. 12, no. 12, 1317–1335 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  3. Lorenzi A., “An inverse problem in the theory of materials with memory. II,” in: Semigroup Theory and Applications (Trieste, 1987), Marcel Dekker, New York (1989), 261–290 (Lecture Notes in Pure and Appl. Math.; vol. 116).

  4. Durdiev D.K., “An inverse problem for the three-dimensional wave equation in a medium with memory,” in: Mathematical Analysis and Discrete Mathematics, Novosibirsk Univ., Novosibirsk (1989), 19–27 [Russian].

  5. Lorenzi A. and Paparoni E., “Direct and inverse problems in the theory of materials with memory,” Rend. Sem. Mat. Univ. Padova, vol. 87, 105–138 (1992).

    MathSciNet  MATH  Google Scholar 

  6. Bukhgeym A.L., “Inverse problems of memory reconstruction,” Inverse Ill-Posed Probl. Ser., vol. 1, no. 3, 193–206 (1993).

    MathSciNet  Google Scholar 

  7. Durdiev D.K., “A multidimensional inverse problem for an equation with memory,” Sib. Math. J., vol. 35, no. 3, 514–521 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bukhgeim A.L. and Dyatlov G.V., “Inverse problems for equations with memory,” in: Inverse Problems and Related Topics (Kobe, 1998), Chapman & Hall/CRC, Boca Raton (2000), 19–35 (Chapman & Hall/CRC Res. Notes Math.; vol. 419).

  9. Durdiev D.K., Inverse Problems for the Media with Aftereffect, TURON–IKBOL, Tashkent (2014).

    Google Scholar 

  10. Durdiev D.K. and Safarov Zh.Sh., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain,” Math. Notes, vol. 97, no. 6, 867–877 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. Durdiev D.K. and Totieva Zh.D., “The problem of determining the multidimensional kernel of the viscoelasticity equation,” Vladikavkaz. Mat. Zh., vol. 17, no. 4, 18–43 (2015).

    MathSciNet  MATH  Google Scholar 

  12. Durdiev D.K. and Totieva Zh. D., “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation,” Sib. Math. J., vol. 58, no. 3, 427–444 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. Durdiev D.K. and Rahmonov A.A., “Inverse problem for a system of integro-differential equations for sh waves in a visco-elastic porous medium: Global solvability,” Theor. Math. Phys., vol. 195, no. 3, 923–937 (2018).

    Article  MATH  Google Scholar 

  14. Durdiev D.K., “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation,” Eurasian J. Math. Comp. Appl., vol. 7, no. 2, 4–19 (2019).

    Google Scholar 

  15. Durdiev D.K. and Totieva Zh. D., “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation,” Math. Methods Appl. Sci., vol. 42, no. 18, 7440–7451 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. Durdiev D.K. and Totieva Zh.D., “About global solvability of a multidimensional inverse problem for an equation with memory,” Sib. Math. J., vol. 62, no. 2, 215–229 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar P., Kinra R., and Mohan M., “A local in time existence and uniqueness result of an inverse problem for the Kelvin–Voigt fluids,” Inverse Probl., vol. 37, no. 8, 085005 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  18. Blagoveshchenskii D.A. and Fedorenko A.S., “The inverse problem for the acoustic equation in a weakly horizontally inhomogeneous medium,” J. Math. Sci., vol. 155, no. 3, 379–389 (2008).

    MathSciNet  MATH  Google Scholar 

  19. Durdiev D.K. and Bozorov Z.R., “A problem of determining the kernel of integro-differential wave equation with weakly horizontal homogeneity,” Dal’nevost. Mat. Zh., vol. 13, no. 2, 209–221 (2013).

    MathSciNet  MATH  Google Scholar 

  20. Durdiev D.K., “An inverse problem for determining two coefficients in an integrodifferential wave equation,” Sib. Zh. Ind. Mat., vol. 12, no. 3, 28–49 (2009).

    MathSciNet  MATH  Google Scholar 

  21. Courant R. and Hilbert D., Methods of Mathematical Physics. II, Interscience, New York and London (1962).

    MATH  Google Scholar 

  22. Kolmogorov A.N. and Fomin S.V., Elements of the Theory of Functions and Functional Analysis. Vol. 2: Measure. The Lebesgue Integral. Hilbert Space, Martino Fine Books, Eastford (2012).

    Google Scholar 

  23. Yakhno V.G., Inverse Problems for Differential Elasticity Equations, Nauka, Novosibirsk (1990) [Russian].

    MATH  Google Scholar 

Download references

Funding

The study was carried out at the North Caucasus Center for Mathematical Research with the support of the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2021–1844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Akhmatov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Vladikavkazskii Matematicheskii Zhurnal, 2021, Vol. 23, No. 4, pp. 15–27. https://doi.org/10.46698/l4464-6098-4749-m

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmatov, Z.A., Totieva, Z.D. The Quasi-Two-Dimensional Coefficient Inverse Problem for the Wave Equation in a Weakly Horizontally Inhomogeneous Medium with Memory. Sib Math J 64, 1462–1471 (2023). https://doi.org/10.1134/S0037446623060186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623060186

Keywords

UDC

Navigation