Skip to main content

Advertisement

Log in

Microfluidic technology for cell biology–related applications: a review

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth. Furthermore, the manuscript presents an overview of cellular stimuli observed by combining surfaces that mimic the complex biochemistries and different geometries of the extracellular matrix, with microfluidic channels regulating the transport of fluids, soluble factors, etc. We have also explained the concept of mechanotransduction, which defines the relation between mechanical force and biological response. Furthermore, the manipulation of cellular microenvironments by the use of microfluidic systems has been highlighted as a useful device for basic cell biology research activities. Finally, the article focuses on highly integrated microfluidic platforms that exhibit immense potential for biomedical and pharmaceutical research as robust and portable point-of-care diagnostic devices for the assessment of clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gravesen, P., Branebjerg, J., Jensen, O.S.: Microfluidics-a review. J. Micromech. Microeng. 3, 168–182 (1993). https://doi.org/10.1088/0960-1317/3/4/002

    Article  CAS  ADS  Google Scholar 

  2. Whitesides, G.M., Stroock, A.D.: Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001). https://doi.org/10.1063/1.1387591

    Article  CAS  Google Scholar 

  3. Becker, H., Gärtner, C.: Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c12::AID-ELPS12%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  4. Jakeway, S.C., de Mello, A.J., Russell, E.L.: Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem. 366, 525–539 (2000). https://doi.org/10.1007/s002160051548

    Article  CAS  PubMed  Google Scholar 

  5. Brody, J.P., Yager, P., Goldstein, R.E., Austin, R.H.: Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996). https://doi.org/10.1016/S0006-3495(96)79538-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005). https://doi.org/10.1103/RevModPhys.77.977

    Article  CAS  ADS  Google Scholar 

  7. Mala, G.M., Li, D.: Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow 20, 142–148 (1999). https://doi.org/10.1016/S0142-727X(98)10043-7

    Article  CAS  Google Scholar 

  8. Weilin, Q., Mala, G.M., Dongqing, L.: Pressure-driven water flows in trapezoidal silicon microchannels. Int. J. Heat Mass Transf. 43, 353–364 (2000). https://doi.org/10.1016/S0017-9310(99)00148-9

    Article  Google Scholar 

  9. Ajdari, A.: Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys. Rev. E 53, 4996–5005 (1996). https://doi.org/10.1103/PhysRevE.53.4996

    Article  CAS  ADS  Google Scholar 

  10. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001). https://doi.org/10.1021/ac001132d

    Article  CAS  Google Scholar 

  11. Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., Whitesides, G.M.: Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000). https://doi.org/10.1021/la000600b

    Article  CAS  Google Scholar 

  12. Jacobson, S.C., McKnight, T.E., Ramsey, J.M.: Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal. Chem. 71, 4455–4459 (1999). https://doi.org/10.1021/ac990576a

    Article  CAS  Google Scholar 

  13. Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H., Beebe, D.J.: Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9, 190–197 (2000). https://doi.org/10.1109/84.846699

    Article  Google Scholar 

  14. Byron Bird, M.R., Stewai, W.E., Lightfoot, E.N.: Transport phenomena. John Wiley & Sons (2006)

  15. Fåhræus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931). https://doi.org/10.1152/ajplegacy.1931.96.3.562

    Article  Google Scholar 

  16. Zharov, V.P., Galanzha, E.I., Menyaev, Y., Tuchin, V.V.: In vivo high-speed imaging of individual cells in fast blood flow. J. Biomed. Opt. 11, 054034 (2006). https://doi.org/10.1117/1.2355666

    Article  PubMed  ADS  Google Scholar 

  17. Pipe, C.J., McKinley, G.H.: Microfluidic rheometry. Mech. Res. Commun. 36, 110–120 (2009). https://doi.org/10.1016/j.mechrescom.2008.08.009

    Article  Google Scholar 

  18. Stroock, A.D., Whitesides, G.M.: Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res. 36, 597–604 (2003). https://doi.org/10.1021/ar0202870

    Article  CAS  PubMed  Google Scholar 

  19. Trietsch, S.J., Hankemeier, T., van der Linden, H.J.: Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemom. Intell. Lab. Syst. 108, 64–75 (2011). https://doi.org/10.1016/j.chemolab.2011.03.005

    Article  CAS  Google Scholar 

  20. Frank, M.: White: Fluid mechanics. McGraw-Hill International Edition, New York (1994)

    Google Scholar 

  21. Cornish, R.J.: Flow in a pipe of rectangular cross-section. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 120, 691–700 (1928). https://doi.org/10.1098/rspa.1928.0175

    Article  ADS  Google Scholar 

  22. Beebe, D.J., Mensing, G.A., Walker, G.M.: Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002). https://doi.org/10.1146/annurev.bioeng.4.112601.125916

    Article  CAS  PubMed  Google Scholar 

  23. Fuerstman, M.J., Lai, A., Thurlow, M.E., Shevkoplyas, S.S., Stone, H.A., Whitesides, G.M.: The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7, 1479 (2007). https://doi.org/10.1039/b706549c

    Article  CAS  PubMed  Google Scholar 

  24. Li, X. (James), Zhou, Y.: Microfluidic devices for biomedical applications. Woodhead Publishing Limited, Cambridge, England (2013)

  25. Folch, A., Toner, M.: Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2, 227–256 (2000). https://doi.org/10.1146/annurev.bioeng.2.1.227

    Article  CAS  PubMed  Google Scholar 

  26. Veenstra, T.T., Lammerink, T.S.J., Elwenspoek, M.C., van den Berg, A.: Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J. Micromech. Microeng. 9, 199–202 (1999). https://doi.org/10.1088/0960-1317/9/2/323

    Article  CAS  ADS  Google Scholar 

  27. Gregory, T.A.: Kovacs: Micromachined transducers sourcebook. WCB/McGraw-Hill, Boston (1998)

    Google Scholar 

  28. El-Ali, J., Sorger, P.K., Jensen, K.F.: Cells on chips. Nature 442, 403–411 (2006). https://doi.org/10.1038/nature05063

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Kutluk, H., Bastounis, E.E., Constantinou, I.: Integration of extracellular matrices into organ-on-chip systems. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202203256

    Article  PubMed  Google Scholar 

  30. Prins, M.W.J., Welters, W.J.J., Weekamp, J.W.: Fluid control in multichannel structures by electrocapillary pressure. Science 1979(291), 277–280 (2001). https://doi.org/10.1126/science.291.5502.277

    Article  ADS  Google Scholar 

  31. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell. Garland Science, New York (2002)

    Google Scholar 

  32. Helmke, B.P., Minerick, A.R.: Designing a nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc. Natl. Acad. Sci. U.S.A. 103, 6419–6424 (2006). https://doi.org/10.1073/pnas.0507304103

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Young, E.W.K., Simmons, C.A.: Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10, 143–160 (2010). https://doi.org/10.1039/B913390A

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J., Huh, H.K., Park, S.H., Lee, S.J., Doh, J.: Endothelial cell monolayer-based microfluidic systems mimicking complex in vivo microenvironments for the study of leukocyte dynamics in inflamed blood vessels. Presented at the (2018)

  35. Skorupska, S., Jastrzebska, E., Chudy, M., Dybko, A., Brzozka, Z.: Microfluidic systems. In: Cardiac Cell Culture Technologies. pp. 3–21. Springer International Publishing, Cham (2018)

  36. Li, Y.-S.J., Haga, J.H., Chien, S.: Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949–1971 (2005). https://doi.org/10.1016/j.jbiomech.2004.09.030

    Article  PubMed  Google Scholar 

  37. Castiaux, A.D., Spence, D.M., Martin, R.S.: Review of 3D cell culture with analysis in microfluidic systems. Anal. Methods 11, 4220–4232 (2019). https://doi.org/10.1039/C9AY01328H

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song, J.W., Gu, W., Futai, N., Warner, K.A., Nor, J.E., Takayama, S.: Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77, 3993–3999 (2005). https://doi.org/10.1021/ac050131o

    Article  CAS  PubMed  Google Scholar 

  39. Chau, L., Doran, M., Cooper-White, J.: A novel multishear microdevice for studying cell mechanics. Lab Chip 9, 1897 (2009). https://doi.org/10.1039/b823180j

    Article  CAS  PubMed  Google Scholar 

  40. Polacheck, W.J., Li, R., Uzel, S.G.M., Kamm, R.D.: Microfluidic platforms for mechanobiology. Lab Chip 13, 2252 (2013). https://doi.org/10.1039/c3lc41393d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lam, R.H.W., Sun, Y., Chen, W., Fu, J.: Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12, 1865 (2012). https://doi.org/10.1039/c2lc21146g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gutierrez, E., Petrich, B.G., Shattil, S.J., Ginsberg, M.H., Groisman, A., Kasirer-Friede, A.: Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip 8, 1486 (2008). https://doi.org/10.1039/b804795b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moehlenbrock, M.J., Price, A.K., Martin, R.S.: Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst 131, 930 (2006). https://doi.org/10.1039/b605136g

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Jang, K., Sato, K., Igawa, K., Chung, U., Kitamori, T.: Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Anal. Bioanal. Chem. 390, 825–832 (2008). https://doi.org/10.1007/s00216-007-1752-7

    Article  CAS  PubMed  Google Scholar 

  45. Huh, D., Fujioka, H., Tung, Y.-C., Futai, N., Paine, R., Grotberg, J.B., Takayama, S.: Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. U.S.A. 104, 18886–18891 (2007). https://doi.org/10.1073/pnas.0610868104

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Baudoin, R., Griscom, L., Monge, M., Legallais, C., Leclerc, E.: Development of a renal microchip for in vitro distal tubule models. Biotechnol. Prog. 23, 1245 (2007). https://doi.org/10.1021/bp0603513

    Article  CAS  PubMed  Google Scholar 

  47. Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. U.S.A. 108, 15342–15347 (2011). https://doi.org/10.1073/pnas.1105316108

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Hsu, Y.-H., Moya, M.L., Hughes, C.C.W., George, S.C., Lee, A.P.: A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990 (2013). https://doi.org/10.1039/c3lc50424g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shields, J.D., Fleury, M.E., Yong, C., Tomei, A.A., Randolph, G.J., Swartz, M.A.: Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007). https://doi.org/10.1016/j.ccr.2007.04.020

    Article  CAS  PubMed  Google Scholar 

  50. Svennersten, K., Berggren, M., Richter-Dahlfors, A., Jager, E.W.H.: Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11, 3287 (2011). https://doi.org/10.1039/c1lc20436j

    Article  CAS  PubMed  Google Scholar 

  51. Wan, C., Chung, S., Kamm, R.D.: Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann. Biomed. Eng. 39, 1840–1847 (2011). https://doi.org/10.1007/s10439-011-0275-8

    Article  PubMed  Google Scholar 

  52. Zheng, W., Jiang, B., Wang, D., Zhang, W., Wang, Z., Jiang, X.: A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12, 3441 (2012). https://doi.org/10.1039/c2lc40173h

    Article  CAS  PubMed  Google Scholar 

  53. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 1979(328), 1662–1668 (2010). https://doi.org/10.1126/science.1188302

    Article  CAS  ADS  Google Scholar 

  54. Sung, J.H., Yu, J., Luo, D., Shuler, M.L., March, J.C.: Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011). https://doi.org/10.1039/C0LC00273A

    Article  CAS  PubMed  Google Scholar 

  55. Taylor, A.M., Rhee, S.W., Tu, C.H., Cribbs, D.H., Cotman, C.W., Jeon, N.L.: Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003). https://doi.org/10.1021/la026417v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Irimia, D., Toner, M.: Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. 1, 506 (2009). https://doi.org/10.1039/b908595e

    Article  CAS  Google Scholar 

  57. Ilina, O., Bakker, G.-J., Vasaturo, A., Hoffman, R.M., Friedl, P.: Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8, 029501–029501 (2011). https://doi.org/10.1088/1478-3975/8/2/029501

    Article  ADS  Google Scholar 

  58. Lin, X., Helmke, B.P.: Micropatterned structural control suppresses mechanotaxis of endothelial cells. Biophys. J. 95, 3066–3078 (2008). https://doi.org/10.1529/biophysj.107.127761

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, D.R.: Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 103, 405–414 (2012). https://doi.org/10.1016/j.bpj.2012.07.003

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Sundararaghavan, H.G., Monteiro, G.A., Firestein, B.L., Shreiber, D.I.: Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102, 632–643 (2009). https://doi.org/10.1002/bit.22074

    Article  CAS  PubMed  Google Scholar 

  61. Sakar, M.S., Neal, D., Boudou, T., Borochin, M.A., Li, Y., Weiss, R., Kamm, R.D., Chen, C.S., Asada, H.H.: Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12, 4976–4985 (2012). https://doi.org/10.1039/c2lc40338b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanaka, Y., Sato, K., Shimizu, T., Yamato, M., Okano, T., Kitamori, T.: A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7, 207–212 (2007). https://doi.org/10.1039/B612082B

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J., Heo, J., Hua, S.Z.: Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells. Lab Chip 10, 235–239 (2010). https://doi.org/10.1039/B914874D

    Article  PubMed  Google Scholar 

  64. Rossi, M., Lindken, R., Hierck, B.P., Westerweel, J.: Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab Chip 9, 1403–1411 (2009). https://doi.org/10.1039/b822270n

    Article  CAS  PubMed  Google Scholar 

  65. Price, G.M., Wong, K.H.K., Truslow, J.G., Leung, A.D., Acharya, C., Tien, J.: Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 6182–6189 (2010). https://doi.org/10.1016/j.biomaterials.2010.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, J., Niklason, L.E.: Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. Integr. Biol. 4, 1487–1497 (2012). https://doi.org/10.1039/c2ib00171c

    Article  CAS  Google Scholar 

  67. van der Meer, A.D., Poot, A.A., Feijen, J., Vermes, I.: Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4, 011103 (2010). https://doi.org/10.1063/1.3366720

    Article  PubMed  PubMed Central  Google Scholar 

  68. Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 108, 11115–11120 (2011). https://doi.org/10.1073/pnas.1103581108

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. Legant, W.R., Pathak, A., Yang, M.T., Deshpande, V.S., McMeeking, R.M., Chen, C.S.: Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. U.S.A. 106, 10097–10102 (2009). https://doi.org/10.1073/pnas.0900174106

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  70. Kim, H.J., Huh, D., Hamilton, G., Ingber, D.E.: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165 (2012). https://doi.org/10.1039/c2lc40074j

    Article  CAS  PubMed  Google Scholar 

  71. Mainardi, A., Cambria, E., Occhetta, P., Martin, I., Barbero, A., Schären, S., Mehrkens, A., Krupkova, O.: Intervertebral disc-on-a-chip as advanced in vitro model for mechanobiology research and drug testing: a review and perspective. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2021.826867

    Article  PubMed  PubMed Central  Google Scholar 

  72. Urban, J.P.G., Smith, S., Fairbank, J.C.T.: Nutrition of the intervertebral disc. Spine (Phila. PA 1976) 29, 2700–2709 (2004). https://doi.org/10.1097/01.brs.0000146499.97948.52

    Article  PubMed  Google Scholar 

  73. Chan, S.C.W., Ferguson, S.J., Gantenbein-Ritter, B.: The effects of dynamic loading on the intervertebral disc. Eur. Spine J. 20, 1796–1812 (2011). https://doi.org/10.1007/s00586-011-1827-1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wuertz, K., Haglund, L.: Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J. 3, 175–184 (2013). https://doi.org/10.1055/s-0033-1347299

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sadowska, A., Kameda, T., Krupkova, O., Wuertz-Kozak, K.: Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. Eur. Cell. Mater. 36, 231–250 (2018). https://doi.org/10.22203/eCM.v036a17

  76. Dai, J., Xing, Y., Xiao, L., Li, J., Cao, R., He, Y., Fang, H., Periasamy, A., Oberhozler, J., Jin, L., Landers, J.P., Wang, Y., Li, X.: Microfluidic disc-on-a-chip device for mouse intervertebral disc—pitching a next-generation research platform to study disc degeneration. ACS Biomater. Sci. Eng. 5, 2041–2051 (2019). https://doi.org/10.1021/acsbiomaterials.8b01522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chou, P.-H., Wang, S.-T., Yen, M.-H., Liu, C.-L., Chang, M.-C., Lee, O.K.-S.: Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells. Stem Cell Res. Ther. 7, 34 (2016). https://doi.org/10.1186/s13287-016-0292-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sivaraman, A., Leach, J., Townsend, S., Iida, T., Hogan, B., Stolz, D., Fry, R., Samson, L., Tannenbaum, S., Griffith, L.: A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005). https://doi.org/10.2174/138920005774832632

    Article  CAS  PubMed  Google Scholar 

  79. Liegibel, U., Sommer, U., Bundschuh, B., Schweizer, B., Hilscher, U., Lieder, A., Nawroth, P., Kasperk, C.: Fluid shear of low magnitude increases growth and expression of TGFβ1 and adhesion molecules in human bone cells in vitro. Exp. Clin. Endocrinol. Diabetes 112, 356–363 (2004). https://doi.org/10.1055/s-2004-821014

    Article  CAS  PubMed  Google Scholar 

  80. Boccazzi, P., Zanzotto, A., Szita, N., Bhattacharya, S., Jensen, K.F., Sinskey, A.J.: Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Appl. Microbiol. Biotechnol. 68, 518–532 (2005). https://doi.org/10.1007/s00253-005-1966-6

    Article  CAS  PubMed  Google Scholar 

  81. Vilkner, T., Janasek, D., Manz, A.: Micro total analysis systems. Recent developments. Anal. Chem. 76, 3373–3386 (2004). https://doi.org/10.1021/ac040063q

    Article  CAS  PubMed  Google Scholar 

  82. Lion, N., Rohner, T.C., Dayon, L., Arnaud, I.L., Damoc, E., Youhnovski, N., Wu, Z.-Y., Roussel, C., Josserand, J., Jensen, H., Rossier, J.S., Przybylski, M., Girault, H.H.: Microfluidic systems in proteomics. Electrophoresis 24, 3533–3562 (2003). https://doi.org/10.1002/elps.200305629

    Article  CAS  PubMed  Google Scholar 

  83. Auroux, P.-A., Koc, Y., deMello, A., Manz, A., Day, P.J.R.: Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004). https://doi.org/10.1039/b408850f

    Article  CAS  PubMed  Google Scholar 

  84. Andersson, H., van den Berg, A.: Microfluidic devices for cellomics: a review. Sens. Actuators B Chem. 92, 315–325 (2003). https://doi.org/10.1016/S0925-4005(03)00266-1

    Article  CAS  Google Scholar 

  85. Verpoorte, E.: Microfluidic chips for clinical and forensic analysis. Electrophoresis 23, 677–712 (2002). https://doi.org/10.1002/1522-2683(200203)23:5%3c677::AID-ELPS677%3e3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  86. Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based systems biology. Mol. Biosyst. 2, 97–112 (2006). https://doi.org/10.1039/b515632g

    Article  CAS  PubMed  Google Scholar 

  87. Bertani, G., Di Tinco, R., Bertoni, L., Orlandi, G., Pisciotta, A., Rosa, R., Rigamonti, L., Signore, M., Bertacchini, J., Sena, P., De Biasi, S., Villa, E., Carnevale, G.: Flow-dependent shear stress affects the biological properties of pericyte-like cells isolated from human dental pulp. Stem Cell Res. Ther. 14, 31 (2023). https://doi.org/10.1186/s13287-023-03254-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Jeon, N., Baskaran, H., Dertinger, S.K.W., Whitesides, G.M., Van De Water, L., Toner, M.: Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002). https://doi.org/10.1038/nbt712

    Article  CAS  PubMed  Google Scholar 

  89. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R., Lee, L.P.: Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005). https://doi.org/10.1002/bit.20289

    Article  CAS  PubMed  Google Scholar 

  90. Yang, M., Li, C.-W., Yang, J.: Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem. 74, 3991–4001 (2002). https://doi.org/10.1021/ac025536c

    Article  CAS  PubMed  Google Scholar 

  91. El-Ali, J., Gaudet, S., Günther, A., Sorger, P.K., Jensen, K.F.: Cell stimulus and lysis in a microfluidic device with segmented gas−liquid flow. Anal. Chem. 77, 3629–3636 (2005). https://doi.org/10.1021/ac050008x

    Article  CAS  PubMed  Google Scholar 

  92. Hu, X., Arnold, W.M., Zimmermann, U.: Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells. Biochim. Biophys. Acta Biomembr. 1021, 191–200 (1990). https://doi.org/10.1016/0005-2736(90)90033-K

    Article  CAS  Google Scholar 

  93. Hu, X., Bessette, P.H., Qian, J., Meinhart, C.D., Daugherty, P.S., Soh, H.T.: Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. U.S.A. 102, 15757–15761 (2005). https://doi.org/10.1073/pnas.0507719102

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Li, P.C.H., Harrison, D.J.: Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568 (1997). https://doi.org/10.1021/ac9606564

    Article  CAS  PubMed  Google Scholar 

  95. Lee, S.-W., Tai, Y.-C.: A micro cell lysis device. Sens. Actuators A Phys. 73, 74–79 (1999). https://doi.org/10.1016/S0924-4247(98)00257-X

    Article  CAS  Google Scholar 

  96. Lu, H., Schmidt, M.A., Jensen, K.F.: A microfluidic electroporation device for cell lysis. Lab Chip 5, 23–29 (2005). https://doi.org/10.1039/b406205a

    Article  CAS  PubMed  Google Scholar 

  97. Jeon, H., Kim, S., Lim, G.: Electrical force-based continuous cell lysis and sample separation techniques for development of integrated microfluidic cell analysis system: A review. Microelectron. Eng. 198, 55–72 (2018). https://doi.org/10.1016/j.mee.2018.06.010

    Article  CAS  Google Scholar 

  98. Huang, Y., Agrawal, B., Sun, D., Kuo, J.S., Williams, J.C.: Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5, 013412 (2011). https://doi.org/10.1063/1.3555195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007). https://doi.org/10.1016/j.actbio.2007.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hou, H.W., Li, Q.S., Lee, G.Y.H., Kumar, A.P., Ong, C.N., Lim, C.T.: Deformability study of breast cancer cells using microfluidics. Biomed. Microdevices 11, 557–564 (2009). https://doi.org/10.1007/s10544-008-9262-8

    Article  CAS  PubMed  Google Scholar 

  101. Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R.B., Di Carlo, D.: Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11, 912–920 (2011). https://doi.org/10.1039/c0lc00595a

    Article  CAS  PubMed  Google Scholar 

  102. Walker, G.M., Sai, J., Richmond, A., Stremler, M., Chung, C.Y., Wikswo, J.P.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005). https://doi.org/10.1039/b417245k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheung, L.S.L., Zheng, X., Stopa, A., Baygents, J.C., Guzman, R., Schroeder, J.A., Heimark, R.L., Zohar, Y.: Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel. Lab Chip 9, 1721–1731 (2009). https://doi.org/10.1039/b822172c

    Article  CAS  PubMed  Google Scholar 

  104. Li, J., Lin, F.: Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 21, 489–497 (2011). https://doi.org/10.1016/j.tcb.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka, T., Ishikawa, T., Numayama-Tsuruta, K., Imai, Y., Ueno, H., Yoshimoto, T., Matsuki, N., Yamaguchi, T.: Inertial migration of cancer cells in blood flow in microchannels. Biomed. Microdevices 14, 25–33 (2012). https://doi.org/10.1007/s10544-011-9582-y

    Article  PubMed  Google Scholar 

  106. Migita, S., Funakoshi, K., Tsuya, D., Yamazaki, T., Taniguchi, A., Sugimoto, Y., Hanagata, N., Ikoma, T.: Cell cycle and size sorting of mammalian cells using a microfluidic device. Anal. Methods 2, 657–660 (2010). https://doi.org/10.1039/c0ay00039f

    Article  CAS  Google Scholar 

  107. Choi, S., Song, S., Choi, C., Park, J.-K.: Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal. Chem. 81, 1964–1968 (2009). https://doi.org/10.1021/ac8024575

    Article  CAS  PubMed  Google Scholar 

  108. Thévoz, P., Adams, J.D., Shea, H., Bruus, H., Soh, H.T.: Acoustophoretic synchronization of mammalian cells in microchannels. Anal. Chem. 82, 3094–3098 (2010). https://doi.org/10.1021/ac100357u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zborowski, M., Chalmers, J.J.: Rare cell separation and analysis by magnetic sorting. Anal. Chem. 83, 8050–8056 (2011). https://doi.org/10.1021/ac200550d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Plouffe, B.D., Mahalanabis, M., Lewis, L.H., Klapperich, C.M., Murthy, S.K.: Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. Anal. Chem. 84, 1336–1344 (2012). https://doi.org/10.1021/ac2022844

    Article  CAS  PubMed  Google Scholar 

  111. Liu, Y.-J., Guo, S.-S., Zhang, Z.-L., Huang, W.-H., Baigl, D., Xie, M., Chen, Y., Pang, D.-W.: A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28, 4713–4722 (2007). https://doi.org/10.1002/elps.200700212

    Article  CAS  PubMed  Google Scholar 

  112. Saliba, A.-E., Saias, L., Psychari, E., Minc, N., Simon, D., Bidard, F.-C., Mathiot, C., Pierga, J.-Y., Fraisier, V., Salamero, J., Saada, V., Farace, F., Vielh, P., Malaquin, L., Viovy, J.-L.: Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl. Acad. Sci. U.S.A. 107, 14524–14529 (2010). https://doi.org/10.1073/pnas.1001515107

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  113. Adams, J.D., Kim, U., Soh, H.T.: Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. U.S.A. 105, 18165–18170 (2008). https://doi.org/10.1073/pnas.0809795105

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Shen, F., Hwang, H., Hahn, Y.K., Park, J.-K.: Label-free cell separation using a tunable magnetophoretic repulsion force. Anal. Chem. 84, 3075–3081 (2012). https://doi.org/10.1021/ac201505j

    Article  CAS  PubMed  Google Scholar 

  115. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H., Quake, S.R.: A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999). https://doi.org/10.1038/15095

    Article  CAS  PubMed  Google Scholar 

  116. Inglis, D.W., Davis, J.A., Zieziulewicz, T.J., Lawrence, D.A., Austin, R.H., Sturm, J.C.: Determining blood cell size using microfluidic hydrodynamics. J. Immunol. Methods 329, 151–156 (2008). https://doi.org/10.1016/j.jim.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  117. Kim, U., Qian, J., Kenrick, S.A., Daugherty, P.S., Soh, H.T.: Multitarget dielectrophoresis activated cell sorter. Anal. Chem. 80, 8656–8661 (2008). https://doi.org/10.1021/ac8015938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, U., Soh, H.T.: Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic–magnetic activated cell sorter. Lab Chip 9, 2313–2318 (2009). https://doi.org/10.1039/b903950c

    Article  CAS  PubMed  Google Scholar 

  119. Cho, S.H., Chen, C.H., Tsai, F.S., Godin, J.M., Lo, Y.-H.: Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS). Lab Chip 10, 1567–1573 (2010). https://doi.org/10.1039/c000136h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. An, J., Lee, J., Lee, S.H., Park, J., Kim, B.: Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal. Bioanal. Chem. 394, 801–809 (2009). https://doi.org/10.1007/s00216-009-2743-7

    Article  CAS  PubMed  Google Scholar 

  121. Lau, A.Y., Lee, L.P., Chan, J.W.: An integrated optofluidic platform for Raman-activated cell sorting. Lab Chip 8, 1116–1120 (2008). https://doi.org/10.1039/b803598a

    Article  CAS  PubMed  Google Scholar 

  122. Jang, K.-J., Suh, K.-Y.: A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010). https://doi.org/10.1039/B907515A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Joydeb Mukherjee is thankful to Zydus Life Science Limited for providing the opportunity to work on this topic. Deepa Chaturvedi would like to thank the Department of Science and Technology (DST-Purse/1933).

Author information

Authors and Affiliations

Authors

Contributions

1. Joydeb Mukherjee: Writing, editing the original draft. 2. Deepa Chaturvedi: Writing the original draft. 3. Shlok Mishra: Writing the original draft. 4. Ratnesh Jain: Writing, editing the original draft. 5. Prajakta Dandekar: Writing, editing the original draft.

Corresponding author

Correspondence to Prajakta Dandekar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, J., Chaturvedi, D., Mishra, S. et al. Microfluidic technology for cell biology–related applications: a review. J Biol Phys 50, 1–27 (2024). https://doi.org/10.1007/s10867-023-09646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09646-y

Keywords

Navigation