Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 6, 2023

Crystal structures of а series of 1-substituted imidazol-4,5-dicarboxylic acids

  • Maria A. Brusina ORCID logo EMAIL logo , Vladislav V. Gurzhiy , Leonid V. Myznikov , Viktor V. Iljin , Stanislav M. Ramsh and Levon B. Piotrovskiy

Abstract

Crystal structure of a series of 1-alkylimidazole-4,5-dicarboxylic acids has been determined. It is shown that an increase in the length of the alkyl group leads to drastic changes in the crystal and molecular structures. 1-Methyl and 1-ethylimidazole-4,5-dicarboxylic acid crystallize in zwitterionic form, but 1-propyl- and 1-butylimidazole-4,5-dicarboxylic acid crystallize as rare equimolar mixture of neutral and zwitterionic tautomeric forms. The observed changes in the crystal and molecular structures are apparently associated with the steric factor, which determines both the packing method and the tautomeric composition of the unit cell.


Corresponding Author: Maria A. Brusina, Institute of Experimental Medicine, 12 Akad. Pavlov St, 197022, St. Petersburg, Russia, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of submitted manuscript and approved its submission.

  3. Competing interests: The authors declare no conflict of interest regarding this article.

  4. Research funding: Research was carried out under support of the Ministry of Education and Science of Russian Federation in the sphere of research activity (project no. FGWG-2022-0004 2022-2025).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Zhang, L., Peng, X. M., Damu, G. L., Geng, R. X., Zhou, C. H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 2014, 34, 340–437; https://doi.org/10.1002/med.21290.Search in Google Scholar PubMed

2. Dirersa, W. B. A review on 4,5-imidazoledicarboxylic acid: their chemistry and coordination potentials. Mod. Chem. Appl. 2017, 5, 1–5, 1000222; https://doi.org/10.4172/2329-6798.1000222.Search in Google Scholar

3. Belousov, Y. A., Drozdov, A. A., Taydakov, I. V., Marchetti, F., Pettinari, R., Pettinari, C. Lanthanide azolecarboxylate compounds: structure, luminescent properties and applications. Coord. Chem. Rev. 2021, 445, 1–41, 214084; https://doi.org/10.1016/j.ccr.2021.214084.Search in Google Scholar

4. Casadevalla, C., Buccia, A., Costas, M., Lloret-Fillol, J. Chapter four – Water oxidation catalysis with well-defined molecular iron complexes. Adv. Inorg. Chem. 2019, 74, 151–196.10.1016/bs.adioch.2019.03.004Search in Google Scholar

5. Brusina, M. A., Nikolaev, D. N., Piotrovskiy, L. B. Synthesis of substituted imidazole-4,5-dicarboxylic acids. Russ. Chem. Bull. 2019, 68, 671–680; https://doi.org/10.1007/s11172-019-2474-7.Search in Google Scholar

6. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061; https://doi.org/10.1039/c4cs00094c.Search in Google Scholar PubMed

7. Gu, Z.-G., Liu, Y.-T., Hong, X.-J., Zhan, Q.-G., Zheng, Z.-P., Zheng, S.-R., Li, W.-S., Hu, S.-J., Cai, Y.-P. Construction of metal-imidazole-based dicarboxylate networks with topological diversity: thermal stability, gas adsorption, and fluorescent emission properties. Cryst. Growth Des. 2012, 12, 2178–2186; https://doi.org/10.1021/cg2002095.Search in Google Scholar

8. Banerjee, D., Mondal, B., Das, D., Das, A. K. Use of imidazole 4,5-dicarboxylic acid resin in vanadium speciation. Microchim. Acta 2003, 141, 107–113; https://doi.org/10.1007/s00604-002-0939-z.Search in Google Scholar

9. Zheng, Y., Tan, C., Wang, Q., Zhang, C. C. 2-(3-Pyridyl)imidazole-4,5-dicarboxylic acid based lanthanide luminescent anion sensor. Solid State Sci. 2011, 13, 1687–1691; https://doi.org/10.1016/j.solidstatesciences.2011.06.014.Search in Google Scholar

10. Piotrovskii, L. B., Lishko, P. V., Maksimyuk, A. P., Aleksandrova, I. Y., Kryshtal, O. A. A new class of agonists and antagonists of N-methyl-D-aspartic acid receptors: derivatives of imidazole-4,5- and pyrazole-3,4-dicarboxylic acids. Neurosci. Behav. Physiol. 2000, 30, 553–558; https://doi.org/10.1007/bf02462614.Search in Google Scholar

11. Efremov, O. M., Aleksandrova, I. Y., Kulikov, S. V., Losev, N. A., Piotrovskii, L. B. Effect of some imidazole-4,5-dicarboxylic acid derivatives on the activity of N-methyl-D-aspartate (NMDA) receptors. Exp. Clinic Pharm. 2005, 68, 7–9 (in Russian).Search in Google Scholar

12. Potter, A., Oldfield, V., Nunns, C., Fromont, C., Ray, S., Northfield, C. J., Bryant, C. J., Scrace, S. F., Robinson, D., Matossova, N., Baker, L., Dokurno, P., Surgenor, A. E., Davis, B., Richardson, C. M., Murray, J. B., Moore, J. D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett. 2010, 20, 6483–6488; https://doi.org/10.1016/j.bmcl.2010.09.063.Search in Google Scholar PubMed

13. Babu, K. S., Reddy, M. S., Tagore, A. R., Reddy, G. S., Sebastian, S., Varma, M. S., Venkateswarlu, G., Bhattacharya, A., Reddy, P. P., Anand, R. V. Efficient synthesis of olmesartan medoxomil, an antihypertensive drug. Synth. Commun. 2009, 39, 291–298; https://doi.org/10.1080/00397910802372558.Search in Google Scholar

14. Piotrovskij, L. B., Brusina, M. A., Nikolaev, D. N., Ramsh, S. M. Method for obtaining 1- and 1,2-dialkyl(aryl)-imidazole-4,5-dicarbonic acids. Patent Ru 2665712, April 4, 2018 (in Russian).Search in Google Scholar

15. Aleksandrova, I. Y., Khrustaleva, V. S., Khromov-Borisov, N. V. Diamides of 1-alkyl imidazole-4,5-dicarboxilyc acids. Zh. Org. Khim. 1983, 19, 416–420. (in Russian).Search in Google Scholar

16. Rigaku Oxford Diffraction, CrysAlisPro Software System (Version 1.171.41.116a); Rigaku Corporation: Wroclaw, Poland, 2021.Search in Google Scholar

17. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Cryst. Sect. A. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

18. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Cryst. Sect. C. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

19. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

20. www.ccdc.cam.ac.uk/structures/.Search in Google Scholar

21. Harmon, K. M., Gill, S. H., Rasmussen, P. G., Hardgrove, G. L.Jr. Hydrogen bonding. Part 69. Inter- and intramolecular hydrogen bonding effects on the structure, solubility, and reactivity of 4,5-dicarboxyimidazoles. J. Mol. Struct. 1999, 478, 145–154; https://doi.org/10.1016/s0022-2860(98)00669-3.Search in Google Scholar

22. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0 – from visualization to analysis, design and pre-diction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Search in Google Scholar PubMed PubMed Central

23. Guo, Y.-P. 4-Carboxy-2-methyl-1H-imidazol-3-ium5-carboxylate monohydrate. Acta Cryst. Sect. E. 2009, E65, o22; https://doi.org/10.1107/s1600536808040221.Search in Google Scholar PubMed PubMed Central

24. Liu, J.-H., Song, W.-D., Li, X.-F., Miao, D.-L. 2-Ethyl-1H-imidazole-4-carboxylate monohydrate. Acta Cryst. Sect. E. 2011, E67, o996–o997; https://doi.org/10.1107/s1600536811010774.Search in Google Scholar PubMed PubMed Central

25. Du, C.-J., Shi, Z.-H., Wang, L.-S., Du, C.-L. 5-Carboxy-2-isopropyl-1H-imidazol-3ium-4-carboxylate monohydrate. Acta Cryst. Sect. E. 2011, E67, o183; https://doi.org/10.1107/s1600536811024767.Search in Google Scholar PubMed PubMed Central

26. Cao, Q., Duan, B.-R., Zhu, B., Cao, Zh. 1H-Imidazol-3-ium-4-carboxylate. Acta Cryst. Sect. E. 2012, 68, o134–o135; https://doi.org/10.1107/s1600536811052998.Search in Google Scholar PubMed PubMed Central

27. Brown, C. J., Erenberg, M. Anthranilic acid, C7H7NO2, by neutron diffraction. Acta Cryst. Sect. C. 1985, 41, 441–443; https://doi.org/10.1107/s0108270185004206.Search in Google Scholar

28. Brown, C. J. The crystal structure of anthranilic acid. Proc. R. Soc. London, Ser. A. 1968, 302, 185–199.10.1098/rspa.1968.0003Search in Google Scholar

29. Asiri, A. M., Alzahrani, K. A. H., Faidallah, H. M., Alamry, K. A., Jotani, M. M., Tiekink, E. R. T. Co-crystallization of a neutral molecule and its zwitterionic tautomer: structure and Hirshfeld surface analysis of 5-methyl-4-(5-methyl-1H-pyrazol-3-yl)-2-phenyl-2,3-dihydro-1H-pyrazol-3-one 5-methyl-4-(5-methyl-1H-pyrazol-2-ium-3-yl)-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-1-ide monohydrate. Acta Cryst. 2019, E75, 565–570.10.1107/S2056989019004389Search in Google Scholar PubMed PubMed Central

30. Liu, X., Michalchuk, A. A. L., Pulham, C. R., Boldyreva, E. V. An acetonitrile-solvated cocrystal of piroxicam and succinic acid with co-existing zwitterionic and non-ionized piroxicam molecules. Acta Cryst. 2019, C75, 29–37; https://doi.org/10.1107/s2053229618016911.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0022).


Received: 2023-05-13
Accepted: 2023-11-14
Published Online: 2023-12-06
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0022/html
Scroll to top button