Skip to main content

Advertisement

Log in

Factors affecting biofilm formation by bacteria on fabrics

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Fabrics act as fomites for microorganisms, thereby playing a significant role in infection transmission, especially in the healthcare and hospitality sectors. This study aimed to examine the biofilm formation ability of four nosocomial infection–causing bacteria (Acinetobacter calcoaceticus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on cotton, polyester, polyester-cotton blend, silk, wool, viscose, and nylon, used frequently in the healthcare sector, by qualitative and quantitative methods. The impact of temperature, pH, and relative humidity (RH) on biofilm formation was also assessed. P. aeruginosa and S. aureus were strong biofilm producers, while E. coli produced weak biofilm. Wool (maximum roughness) showed the highest bacterial load, while silk (lowest roughness) showed the least. P. aeruginosa exhibited a higher load on all fabrics, than other test bacteria. Extracellular polymeric substances were characterized by infrared spectroscopy. Roughness of biofilms was assessed by atomic force microscopy. For biofilm formation, optimum temperature, pH, and RH were 30 °C, 7.0, and 62%, respectively. MgCl2 and CaCl2 were the most effective in removing bacterial biofilm. In conclusion, biofilm formation was observed to be influenced by the type of fabric, bacteria, and environmental conditions. Implementing recommended guidelines for the effective disinfection of fabrics is crucial to curb the risk of nosocomial infections. In addition, designing modified healthcare fabrics that inhibit pathogen load could be an effective method to mitigate the transmission of infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article [and its supplementary information files].

References

  • Achinas S, Charalampogiannis N, Euverink GJW (2019) A brief recap of microbial adhesion and biofilms. Appl Sci 9:2801–2815

    Article  CAS  Google Scholar 

  • Al-Nabulsi AA, Jaradat ZW, Al Qudsi FR, Elsalem L, Osaili TM, Olaimat AN, Esposito G, Liu SQ, Ayyash MM (2022) Characterization and bioactive properties of exopolysaccharides produced by Streptococcus thermophilus and Lactobacillus bulgaricus isolated from labaneh. LWT 167:113817–113827

  • Arciola CR, Baldassarri L, Montanaro L (2001) Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 39:2151–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assefa M, Amare A (2022) Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist 15:5061–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae YM, Baek SY, Lee SY (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153:465–473

    Article  CAS  PubMed  Google Scholar 

  • Bajpai V, Bajpai S, Jha MK, Dey A, Ghosh S (2011) Microbial adherence on textile materials: a review. J Environ Res Dev 5:666–672

    CAS  Google Scholar 

  • Bhagwat G, O’Connor W, Grainge I, Palanisami T (2021) Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front Microbiol 12:1–10

    Article  Google Scholar 

  • Bramhachari PV, Dubey SK (2006) Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Lett Appl Microbiol 43:571–577

    Article  CAS  PubMed  Google Scholar 

  • Bunt CR, Jones DS, Tucker IG (1993) The effects of pH, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test. Int J Pharm 99:93–98

    Article  CAS  Google Scholar 

  • Cangui-Panchi SP, Nacato-Toapanta AL, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A (2022) Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. Curr Res Microb Sci 3:100175–100186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Stewart PS (2000) Biofilm removal caused by chemical treatments. Water Res 34:4229–4233

    Article  CAS  Google Scholar 

  • Chen YP, Zhang P, Guo JS, Fang F, Gao X, Li C (2013) Functional groups characteristics of EPS in biofilm growing on different carriers. Chemosphere 92:633–638

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32

    Article  CAS  PubMed  Google Scholar 

  • Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636–1650

    Article  PubMed  PubMed Central  Google Scholar 

  • de Almeida J, Hoogenkamp M, Felippe WT, Crielaard W, van der Waal SV (2016) Effectiveness of EDTA and modified salt solution to detach and kill cells from Enterococcus faecalis biofilm. J Endod 42:320–323

    Article  PubMed  Google Scholar 

  • del Agustín MR, Stengel P, Kellermeier M, Tücking KS, Müller M (2023) Monitoring growth and removal of Pseudomonas biofilms on cellulose-based fabrics. Microorganisms 11:892–909

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4:274–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit S, Varshney S, Gupta D, Sharma S (2023) Textiles as fomites in the healthcare system. Appl Microbiol Biotechnol 107:3887–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Klein MI, Gregoire S, Singh AP, Vorsa N, Koo H (2013) The specific degree-of-polymerization of A-type proanthocyanidin oligomers impacts Streptococcus mutans glucan-mediated adhesion and transcriptome responses within biofilms. Biofouling 29:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Goyal S, Khot SC, Ramachandran V, Shah KP, Musher DM (2019) Bacterial contamination of medical providers’ white coats and surgical scrubs: a systematic review. Am J Infect Control 47:994–1001

    Article  PubMed  Google Scholar 

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand Sect Phys Chem 81:89–96

    Article  Google Scholar 

  • Gudiña EJ, Pereira JFB, Costa R, Evtuguin DV, Coutinho JAP, Teixeira JA, Rodrigues LR (2015) Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 14:1–11. https://doi.org/10.1186/s12934-015-0197-5

  • Gupta P, Bairagi N, Gupta D (2019) Effect of domestic laundering on removal of bacterial contamination from nurses’ white coats. In: Majumdar A, Gupta D, Gupta S (eds) Functional textiles and clothing. Springer Singapore, pp 67–73. https://doi.org/10.1007/978-981-13-7721-1

  • Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8:1800465–1800490

    Article  Google Scholar 

  • Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H (2009) Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. J Biosci Bioeng 107:250–255

    Article  CAS  PubMed  Google Scholar 

  • Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL (2020) Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expo Sci Environ Epidemiol 30:219–235

    Article  PubMed  Google Scholar 

  • Hostacká A, Ciznar I, Stefkovicova M (2010) Temperature and pH affect the production of bacterial biofilm. Folia Microbiol (praha) 55:75–78

  • Hufnagel DA, Depas WH, Chapman MR (2015) The biology of the Escherichia coli extracellular matrix. Microbiol Spectr 3:10–1128

    Article  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chinese Med Assoc 81:7–11

    Article  Google Scholar 

  • Kavita K, Mishra A, Jha B (2011) Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus. Biofouling 27:309–317

    Article  CAS  PubMed  Google Scholar 

  • Khelissa SO, Jama C, Abdallah M, Boukherroub R, Faille C, Chihib N-E (2017) Effect of incubation duration, growth temperature, and abiotic surface type on cell surface properties, adhesion and pathogenicity of biofilm-detached Staphylococcus aureus cells. AMB Express 7:1–13

    CAS  Google Scholar 

  • Koca O, Altoparlak U, Ayyildiz A, Kaynar H (2012) Persistence of nosocomial pathogens on various fabrics. Eurasian J Med 44:28–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kochkodan V, Tsarenko S, Potapchenko N, Kosinova V, Goncharuk V (2008) Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220:380–385

    Article  CAS  Google Scholar 

  • Kreve S, Reis ACD (2021) Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn Dent Sci Rev 57:85–96. https://doi.org/10.1016/j.jdsr.2021.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar MA, Anandapandian KTK, Parthiban K (2011) Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Brazilian Arch Biol Technol 54:259–265

    Article  CAS  Google Scholar 

  • Lee J, Bae Y, Lee S, Lee S (2015) Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J Food Sci 80:M2279–M2286

    Article  CAS  PubMed  Google Scholar 

  • McWhirter MJ, McQuillan AJ, Bremer PJ (2002) Influence of ionic strength and pH on the first 60 min of Pseudomonas aeruginosa attachment to ZnSe and to TiO2 monitored by ATR-IR spectroscopy. Colloids Surfaces B Biointerfaces 26:365–372

    Article  CAS  Google Scholar 

  • Melo RT, Mendonça EP, Monteiro GP, Siqueira MC, Pereira CB, Peres PABM, Fernandez H, Rossi DA (2017) Intrinsic and extrinsic aspects on Campylobacter jejuni biofilms. Front Microbiol 8:1332–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Mıdık F, Tokatlı M, Bagder Elmacı S, Ozcelik F (2020) Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Arch Microbiol 202:875–885

    Article  PubMed  Google Scholar 

  • Mika JT, Thompson AJ, Dent MR, Brooks NJ, Michiels J, Hofkens J, Kuimova MK (2016) Measuring the viscosity of the Escherichia coli plasma membrane using molecular rotors. Biophys J 111:1528–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386

    Article  CAS  PubMed  Google Scholar 

  • Mohebi S, Shafiee H-A, Ameli N (2017) Evaluation of enamel surface roughness after orthodontic bracket debonding with atomic force microscopy. Am J Orthod Dentofac Orthop 151:521–527

    Article  Google Scholar 

  • Montagut AM, Granados A, Lazurko C, El-Khoury A, Suuronen EJ, Alarcon EI, Sebastián RM, Vallribera A (2019) Triazine mediated covalent antibiotic grafting on cotton fabrics as a modular approach for developing antimicrobial barriers. Cellulose 26:7495–7505

    Article  CAS  Google Scholar 

  • Moraes JO, Cruz EA, Souza EGF, Oliveira TCM, Alvarenga VO, Pena WEL, Sant’Ana AS, Magnani M (2018) Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Int J Food Microbiol 281:90–100

    Article  CAS  PubMed  Google Scholar 

  • Nostro A, Cellini L, Di Giulio M, D’Arrigo M, Marino A, Blanco AR, Favaloro A, Cutroneo G, Bisignano G (2012) Effect of alkaline pH on staphylococcal biofilm formation. APMIS 120:733–742

    Article  CAS  PubMed  Google Scholar 

  • Premkumar S, Thangamani K (2017) Study of woven and non-woven fabric on water retention property for effective curing of concrete. J Text Inst 108:962–970

    Article  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:4631–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Zhou Y, Chang Y, Liang X, Zhang H, Lin X, Qing K, Zhou X, Luo Z (2022) The Effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. Int J Environ Res Public Health 19:15345–15357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina-Car B, Kovacevic S, Schwarz I, Dimitrovski K (2020) Microbial barrier properties of cotton fabric-influence of weave architecture. Polymers (basel) 12:1570–1587

    Article  CAS  PubMed  Google Scholar 

  • Salama Y, Chennaoui M, Sylla A, Mountadar M, Rihani M, Assobhei O (2016) Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat 57:16220–16237

    Article  CAS  Google Scholar 

  • Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:1–10

    Article  Google Scholar 

  • Song F, Koo H, Ren D (2015) Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 94:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Stepanović S, Vuković D, Hola V, Di BG, Djukic S, Ćirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

    Article  PubMed  Google Scholar 

  • Taglialegna A, Navarro S, Ventura S, Garnett JA, Matthews S, Penades JR, Lasa I, Valle J (2016) Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLoS Pathog 12:1–34

    Article  Google Scholar 

  • Tewari S, Sharma S (2020) Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: a study from lab to field. Soil Tillage Res 198:104545–104555

    Article  Google Scholar 

  • Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    Article  CAS  PubMed  Google Scholar 

  • Varshney S, Pandey P, Gupta D, Sharma S (2020) Role of fabric properties, moisture and friction in transfer of bacteria from fabric to fabric. Text Res J 90:478–485

    Article  CAS  Google Scholar 

  • Varshney S, Sain A, Gupta D, Sharma S (2021) Factors affecting bacterial adhesion on selected textile fibres. Indian J Microbiol 61:31–37

    Article  CAS  PubMed  Google Scholar 

  • Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985–997

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li Q, Li M-M, Chen T-H, Zhou Y-F, Yue Z-B (2014) Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour Technol 163:374–376

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Bawazir M, Dhall A, Kim H-E, He L, Heo J, Hwang G (2021) Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front Bioeng Biotechnol 9:643722–643743

    Article  PubMed  PubMed Central  Google Scholar 

  • Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A (2010) A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol 33:137–145

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Science and Engineering Research Board, Government of India (Grant number: PDF/2021/001456).

Author information

Authors and Affiliations

Authors

Contributions

S. D.: funding acquisition; investigation; formal analysis; writing—original draft. S. V.: methodology; investigation. D. G.: supervision; writing—review and editing. S. S.: conceptualization; funding acquisition; project administration; supervision; formal analysis; writing—review and editing.

Corresponding author

Correspondence to Shilpi Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This article does not include any studies with animal or human subjects.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.30 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Varshney, S., Gupta, D. et al. Factors affecting biofilm formation by bacteria on fabrics. Int Microbiol (2023). https://doi.org/10.1007/s10123-023-00460-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-023-00460-z

Keywords

Navigation