Skip to main content
Log in

Morphological, Optical and Thermal Properties of bioactive-Chitosan Nanostructured Edible Films for Food Packaging Applications

  • RESEARCH
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The application of nanostructured edible films is an emerging technology for fruit and vegetables postharvest preservation. These films act as a barrier between the fruit surface and the surrounding environment delaying product ripening; therefore, their characterization is of special interest. In this study, three different nanostructured films based on chitosan nanoparticles, thyme essential oil or propolis-loaded chitosan nanoparticles were prepared. The films were characterized based on their morphology by scanning electron microscopy, crystalline structure by X-ray diffraction, optical properties by ellipsometry, and thermal properties (diffusivity, effusivity, and conductivity) using the photoacoustic technique. Also, wettability, water activity and permeability (water vapor diffusion coefficient) were measured. Aggregates were observed for the propolis-loaded chitosan nanoparticles film by scanning electron microscopy. All three films were semi-crystalline with similar roughness (94.2–95.6%), and thermal parameters values were diffusivity between 1.7 and 2.3 × 10–6 m2/s, effusivity between 82.57 and 86.01 Ws1/2/m2K, and conductivity between 0.11 and 0.12 Wm−1 K−1. The chitosan nanoparticles film was the most hydrophobic (37.55°) with the lowest permeability (0.77 × 10–8 cm2 s−1). Bioactive-chitosan nanostructured edible films are a good alternative as food packaging due to their physicochemical, optical and thermal properties for application as a protective barrier for horticultural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. E. Saputra, W. Tjahjaningsih, A.A. Abdillah, Application of edible film from chitosan as biodegradable packaging. IOP Conf. Ser:. Earth Environ. Sci. 679, 012071 (2021). https://doi.org/10.1088/1755-1315/679/1/012071

    Article  Google Scholar 

  2. M.W. Apriliyani, Purwadi, A. Manab, B.M. Ahmad, L.M. Uula, Physico-chemical and antimicrobial properties of casein chitosan edible films as food quality and food safety. IOP Conf. Ser. Earth Environ. Sci. 443, 012018 (2020). https://doi.org/10.1088/1755-1315/443/1/012018.3

    Article  Google Scholar 

  3. N. Benbettaïeb, T. Karbowiak, F. Debeaufort, Bioactive edible films for food applications: influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. 59(7), 1137–1153 (2019). https://doi.org/10.1080/10408398.2017.1393384

    Article  CAS  Google Scholar 

  4. A. López-Ortiz, I.Y. Pacheco Pineda, L.L. Méndez-Lagunas, A. Balbuena Ortega, L. Guerrero Martínez, J.P. Pérez-Orozco, J.A. del Río, P.K. Nair, Optical and thermal properties of edible coatings for application in solar drying. Sci. Rep. 11, 10051 (2021). https://doi.org/10.1038/s41598-021-88901-5

    Article  ADS  CAS  PubMed Central  Google Scholar 

  5. V. Chaudhary, N. Thakur, P. Kajla, S. Thakur, S. Punia, Application of encapsulation technology in edible films: carrier of bioactive compounds. Front. Sustain. Food Syst. 5, 734921 (2021). https://doi.org/10.3389/fsufs.2021.734921

    Article  Google Scholar 

  6. A. Rosyada, W.B. Sunarharum, E. Waziiroh, Characterization of chitosan nanoparticles as an edible coating material. IOP Conf. Ser. Earth Environ. Sci. 230, 012043 (2019). https://doi.org/10.1088/1755-1315/230/1/012043

    Article  Google Scholar 

  7. B. Ismail, S.F. Mohammed, U. Garba, S.N. Sanusi, Edible films and coatings based on chitosan with essential oils for antimicrobial food packaging application. Riv. Ital. Sostanze Gr. 98, 27–37 (2021)

    CAS  Google Scholar 

  8. H. Yong, J. Liu, Active packaging films and edible coatings based on polyphenol-rich propolis extract: a review. Compr. Rev. Food Sci. Saf. 20, 2106–2145 (2021). https://doi.org/10.1111/1541-4337.12697

    Article  CAS  Google Scholar 

  9. F. Wua, M. Misra, A.K. Mohanty, Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 117, 101395 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101395

    Article  CAS  Google Scholar 

  10. I. Montaño, I. Valenzuela, K. Villavicencio, Competitiveness of the Mexican red tomato in the international market: analysis 2003–2017. Rev. Mex. Cienc. Agr. 12(7), 1185–1197 (2021)

    Google Scholar 

  11. FAOSTAT. Food and Agriculture Organization Corporate Statistical Database, 2020. https://www.fao.org/faostat/en/#home. Accessed 01 June 2023

  12. P. Zhao, J.P. Ndayambaje, X. Liu, X. Xia, Microbial spoilage of fruits: a review on causes and prevention methods. Food Rev. Int. 38(1), 225–246 (2020). https://doi.org/10.1080/87559129.2020.1858859

    Article  CAS  Google Scholar 

  13. H. Rizwana, N.A. Bokahri, S.A. Alsahli, A.S. Al Showiman, R.M. Alzahrani, H.A. Aldehaish, Postharvest disease management of Alternaria spots on tomato fruit by Annona muricata fruit extracts. Saudi J. Biol. Sci. 28, 2236–2244 (2021). https://doi.org/10.1016/j.sjbs.2021.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Díaz-Montes, R. Castro-Muñoz, Edible films and coatings as food-quality preservers: an overview. Foods 10, 249 (2021). https://doi.org/10.3390/foods10020249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S.K. Paul, S. Sarkar, L.N. Sethi, S.K. Ghosh, Development of chitosan based optimized edible coating for tomato (Solanum lycopersicum) and its characterization. J. Food Sci. Technol. 55(7), 2446–2456 (2018). https://doi.org/10.1007/s13197-018-3162-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E. Medina, N. Caro, L. Abugoch, A. Gamboa, M. Díaz-Dosque, C. Tapia, Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J. Food Eng. 240, 191–198 (2019). https://doi.org/10.1016/j.jfoodeng.2018.07.023

    Article  CAS  Google Scholar 

  17. S.H. Othman, N.F.L. Othman, R.A. Shapi’I, S.H. Ariffin, K.F.M. Yunos, Corn starch/chitosan nanoparticles/thymol bionanocomposite films for potential food packaging applications. Polymers 13, 390 (2021). https://doi.org/10.3390/polym13030390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z.N. Correa-Pacheco, S. Bautista-Baños, M. Ramos-García, M. Martínez-González, J. Hernández-Romano, Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Prog. Org. Coat. 137, 105326 (2019). https://doi.org/10.1016/j.porgcoat.2019.105326

    Article  CAS  Google Scholar 

  19. A.G. Luque-Alcaraz, M.O. Cortez-Rocha, C.A. Velázquez-Contreras, L. Acosta-Silva, H. Santacruz-Ortega, A. Burgos-Hernández, W.M. Argüelles-Monal, M. Plascencia-Jatomea, Enhanced antifungal effect of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Aspergillus parasiticus spores. J. Nanomater. 2016, 6060137 (2016). https://doi.org/10.1155/2016/6060137

    Article  CAS  Google Scholar 

  20. Z.N. Correa-Pacheco, M.L. Corona-Rangel, S. Bautista-Baños, R.I. Ventura-Aguilar, Application of natural-based nanocoatings for extending the shelf life of green bell pepper fruit. J. Food Sci. 86(1), 95–102 (2021). https://doi.org/10.1111/1750-3841.15542

    Article  CAS  PubMed  Google Scholar 

  21. S. Sreekumar, F. Goycoolea, B. Moerschbacher, G. Rivera-Rodriguez, Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci. Rep. 8, 4695 (2018). https://doi.org/10.1038/s41598-018-23064-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.A. Aguilar-Mendez, E. San Martin-Martinez, J.E. Morales, A. Cruz-Orea, M.R. Jaime-Fonseca, Photothermal techniques applied to the determination of the water vapor diffusion coefficient and thermal diffusivity of edible films. Anal. Sci. 3, 457–461 (2007). https://doi.org/10.2116/analsci.23.457

    Article  Google Scholar 

  23. G. Lopez-Bueno, E. San Martin-Martinez, A. Cruz-Orea, M. Tufiño, F. Sanchez, Photothermal configuration applied to the study of water vapor permeability in biodegradable films under several water activities. Rev. Sci. Instrum. 4(1), 761–763 (2003). https://doi.org/10.1063/1.1512765

    Article  ADS  CAS  Google Scholar 

  24. J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gómez, Determination of thermal diffusivity and thermal effusivity of the (Bi0.5Na0.5)0.935Ba0.065TiO3 ferroelectric ceramics by photothermal techniques. Ferroelectr. Lett. 35, 136–143 (2008). https://doi.org/10.1080/07315170802520144

    Article  ADS  CAS  Google Scholar 

  25. S.A. Tomás, A. Cruz-Orea, S. Stolik, R. Pedroza-Islas, D.L. Villagómez-Zavala, C. Gómez-Corona, Determination of the thermal diffusivity of edible films. Int. J. Thermophys. 25(2), 611–620 (2004)

    Article  ADS  Google Scholar 

  26. G. Lara-Hernández, J.C. Benavides-Parra, A. Cruz-Orea, E. Contreras-Gallegos, C. Hernández-Aguilar, J.J.A. Flores-Cuautle, Thermal characterization of castor oil as additive in lubricant oil using photothermal techniques. Superf. y Vacío 3(1), 6–9 (2018)

    Article  Google Scholar 

  27. G. Lara-Hernández, A. Cruz-Orea, E. Suaste-Gómez, J.J.A. Flores-Cuautle, Glucose in aqueous solution thermal characterization by photopyroelectric techniques. Rev. Mex. Fis. 63, 549–552 (2017)

    Google Scholar 

  28. R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M.L. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Álvarez, Thermal properties of centrifuged oils measured by alternative photothermal techniques. Themochim. Acta 657, 66–71 (2017). https://doi.org/10.1016/j.tca.2017.09.014

    Article  CAS  Google Scholar 

  29. F. Xue, M. Zhao, X. Liu, R. Chu, Z. Qiao, C. Li, B. Adhikari, Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Future Foods 3, 000033 (2021). https://doi.org/10.1016/j.fufo.2021.100033

    Article  CAS  Google Scholar 

  30. S. Sharma, S. Jaiswal, B. Duffy, A.K. Jaiswal, Nanostructured materials for food applications:Spectroscopy, microscopyandphysicalproperties. Bioengineering 6(1), 26 (2019). https://doi.org/10.3390/bioengineering6010026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Wang, R. Zhang, W. Qin, J. Dai, Q. Zhang, K. Lee, Y. Liu, Physicochemical properties of gelatin films containing tea polyphenol loaded chitosan nanoparticles generated by electrospray. Mater. Des. 185, 108277 (2002). https://doi.org/10.1016/j.matdes.2019.108277

    Article  CAS  Google Scholar 

  32. L. Xu, G. Han, J. Hu, Y. He, J. Pan, Y. Li, J. Xianga, Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water–air and water–oil interfaces. Phys. Chem. Chem. Phys. 11, 6490 (2009). https://doi.org/10.1039/b820970g

    Article  CAS  PubMed  Google Scholar 

  33. C. Jansen-Alves, K.F. Fernandes, M.M. Crizel-Cardozo, F.D. Krumreich, C.D. Borges, R.C. Zambiazi, Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food Bioprocess. Tech. 11, 1422–1436 (2018). https://doi.org/10.1007/s11947-018-2115-4

    Article  CAS  Google Scholar 

  34. M.E.A. Ali, M.M.S. Aboelfadl, A.M. Selim, H.F. Khalil, G.M. Elkady, Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Sep. Sci. Technol. 53, 2870 (2018). https://doi.org/10.1080/01496395.2018.1489845

    Article  CAS  Google Scholar 

  35. N. Cartier, A. Domand, H. Chanzy, Single crystals of chitosan. Int. J. Biol. Macromol. 12(5), 289–294 (1990). https://doi.org/10.1016/0141-8130(90)90015-3

    Article  CAS  PubMed  Google Scholar 

  36. S. Hajinezhad, B.M. Razavizadeh, R. Niazmand, Study of antimicrobial and physicochemical properties of LDPE/propolis extruded films. Polym. Bull. 77, 4335–4353 (2020). https://doi.org/10.1007/s00289-019-02965-y

    Article  CAS  Google Scholar 

  37. J. Madhavi, Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size–strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl. Sci. 1, 509 (2019). https://doi.org/10.1007/s42452-019-1291-9

    Article  CAS  Google Scholar 

  38. Y. Jampafuang, A. Tongta, Y. Waiprib, Impact of crystalline structural differences between α- and β-chitosan on their nanoparticle formation via ionic gelation and superoxide radical scavenging activities. Polymers 11, 2010 (2019). https://doi.org/10.3390/polym11122010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. P.K. Naito, Y. Ogawa, D. Sawada, Y. Nishiyama, T. Iwata, M. Wada, X-ray cristal structure of anhydrous chitosan at atomic resolution. Biopolymers 105(7), 361–368 (2016). https://doi.org/10.1002/bip.22818

    Article  CAS  PubMed  Google Scholar 

  40. A. Rezaei, S. Khavari, M. Sami, Incorporation of thyme essential oil into the β-cyclodextrin nanosponges: preparation, characterization and antibacterial activity. J. Mol. Struct. 1241, 130610 (2021). https://doi.org/10.1016/j.molstruc.2021.130610

    Article  CAS  Google Scholar 

  41. F.M. Fakhouri, S.M. Martelli, T. Caon, J.I. Velasco, R.C. Buontempo, A.P. Bilck, L.H.I. Mei, The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT-Food Sci. Technol. 87, 293–300 (2018). https://doi.org/10.1016/j.lwt.2017.08.056

    Article  CAS  Google Scholar 

  42. V.A. Kolchinskiy, S.S. Voznesenskiy, S.Y. Bratskaya, A.Y. Mironenko, A.V. Nepomnyaschiy, Investigation of the humidity influence on optical properties of chitosan thin films by spectroscopic ellipsometry. Phys. Procedia 23, 110–114 (2012). https://doi.org/10.1016/j.phpro.2012.01.028

    Article  ADS  CAS  Google Scholar 

  43. J. Huang, S.Z. Moghaddam, E. Thormann, Structural investigation of a self-cross-linked chitosan/alginate dialdehyde multilayered film with in situ QCM-D and spectroscopic ellipsometry. ACS Omega 4, 2019 (2019). https://doi.org/10.1021/acsomega.8b03145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. C. Howlader, M. Hasan, A. Zakhidov, M.Y. Chen, Determining the refractive index and the dielectric constant of PPDT2FBT thin film using spectroscopic ellipsometry. Opt. Mater. 110, 110445 (2020). https://doi.org/10.1016/j.optmat.2020.110445

    Article  CAS  Google Scholar 

  45. B. Machado, S. Facchi, A. de Oliveira, C. Nunes, P. Souza, B. Vilsinski, K. Popat, M. Kipper, E. Muniz, A. Martins, Bactericidal Pectin/Chitosan/Glycerol films for food pack coatings: a critical viewpoint. Int. J. Mol. Sci. 21, 8663 (2020). https://doi.org/10.3390/ijms21228663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. W. Wang, K. Lockwood, L. Boyd, M. Davidson, S. Movafaghi, H. Vahabi, S. Khetani, A. Kota, Superhydrophobic coatings with edible materials. ACS Appl. Mater. Interfaces 8(29), 18664–18668 (2016). https://doi.org/10.1021/acsami.6b06958

    Article  CAS  PubMed  Google Scholar 

  47. D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation. Adv. Colloid Interface 81(3), 167–249 (1999). https://doi.org/10.1016/S0001-8686(98)00087-6

    Article  CAS  Google Scholar 

  48. Y. Yuan, T.R. Lee, Surface science techniques (Springer, Berlin, 2013)

    Google Scholar 

  49. C.O. Adetunji, J.O. Oderijan, J.B. Adetunji, S.O. Owa, Influence of chitosan edible coating on postharvest qualities of Capsicum annum L. during storage in evaporative cooling system. Croat J. Food Sci. Technol. 11(1), 1–8 (2019). https://doi.org/10.17508/CJFST.2019.11.1.09

    Article  Google Scholar 

  50. O. Erkmen, T.F. Bozoglu, Food microbiology: principles into practice (Wiley, New York, 2016)

    Book  Google Scholar 

  51. N. Aziman, L.K. Kian, M. Jawaid, M. Sanny, S. Alamery, Morphological, structural, thermal, permeability, and antimicrobial activity of PBS and PBS/TPS films incorporated with biomaster-silver for food packaging application. Polymers 13, 391 S (2021). https://doi.org/10.3390/polym13030391

    Article  CAS  Google Scholar 

  52. F.M. Pelissari, M.V.E. Grossmann, F. Yamashita, E.A.G. Pineda, Antimicrobial, mechanical, and barrier properties of cassava starch−chitosan films incorporated with oregano essential oil. J. Agr. Food Chem. 57, 7499–7504 (2009). https://doi.org/10.1021/jf9002363

    Article  CAS  Google Scholar 

  53. W.F. Lai, W.T. Wong, Design and practical considerations for active polymeric films in food packaging. Int. J. Mol. Sci. 23, 6295 (2022). https://doi.org/10.3390/ijms23116295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Vasi, G. Ceccio, A. Cannavò, P. Pleskunov, J. Vacík, Study of wettability of polyethylene membranes for food packaging. Sustainability 14, 5863 (2022). https://doi.org/10.3390/su14105863

    Article  CAS  Google Scholar 

  55. V. Siracusa, in Surface Modification of Polymers: Methods and Applications, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, New York, 2020), pp. 347–361

  56. C.L. Wilson, Intelligent and active packaging for fruits and vegetables (CRC Press, Florida, 2007)

    Book  Google Scholar 

  57. J. Rattanakaran, R. Saengrayap, N. Aunsri, S. Padee, C. Prahsarn, H. Kitazawa, C.F.H. Bishop, S. Chaiwong, Performance of thermal insulation covering materials to reduce postharvest losses in okra. Horticulturae 7, 392 (2021). https://doi.org/10.3390/horticulturae7100392

    Article  Google Scholar 

  58. M. Mukama, A. Ambaw, U. Linus Opara, Thermophysical properties of fruit—a review with reference to postharvest handling. J. Food Meas. Charact. 14(5), 2917–2937 (2020). https://doi.org/10.1007/s11694-020-00536-8

    Article  Google Scholar 

  59. E.M. Gabr, E.I. Arafa, A.S. El-Tabei, Eco-Friendly thermal insulator from agricultural wastes and chitosan. Egypt. J. Chem. 65(13), 635–643 (2022). https://doi.org/10.21608/EJCHEM.2022.157536.6827

    Article  Google Scholar 

  60. N. Mati-Baouche, H. De Baynast, A. Lebert, S. Sun, C.J.S. Lopez-Mingo, P. Leclaire, P. Michaud, Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Ind. Crops Prod. 58, 244–250 (2014). https://doi.org/10.1016/j.indcrop.2014.04.022

    Article  CAS  Google Scholar 

  61. E. Jang, P. Banerjee, J. Huang, R. Holley, J.T. Gaskins, M.S.B. Hoque, P.E. Hopkins, D. Madan, Thermoelectric performance enhancement of naturally occurring bi and chitosan composite films using energy efficient method. Electronics 9, 532 (2020). https://doi.org/10.3390/electronics9030532

    Article  CAS  Google Scholar 

  62. Z. Yenier, Y. Seki, I. Şen, K. Sever, O. Mermer, M. Sarikanat, Manufacturing and mechanical, thermal and electrical characterization of graphene loaded chitosan composites. Compost. Part-B Eng. 98, 281–287 (2016). https://doi.org/10.1016/j.compositesb.2016.04.072

    Article  CAS  Google Scholar 

  63. Q. Zou, S. Xiong, M. Jiang, L. Chen, K. Zheng, P. Fu, J. Gai, Highly thermally conductive and eco-friendly OH-h-BN/chitosan nanocomposites by constructing a honeycomb thermal network. Carbohyd. Polym. 266, 118127 (2021). https://doi.org/10.1016/j.carbpol.2021.118127

    Article  CAS  Google Scholar 

  64. J. Wang, K. Kasuya, H. Koga, M. Nogi, K. Uetani, Thermal conductivity analysis of chitin and deacetylated-chitin nanofiber films under dry conditions. Nanomaterials 11, 658 (2021). https://doi.org/10.3390/nano11030658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Tasheva, V. Gandova, V. Prodanova-Stefanova, K. Marinova, M. Dimov, K. Dobreva, A. Stoyanova, Investigation of the thermodynamic and thermal properties of clary sage (Salvia sclarea L.) essential oil and its main components. E3S Web Conf. 286, 02003 (2021). https://doi.org/10.1051/e3sconf/202128602003

    Article  CAS  Google Scholar 

  66. W. Yang, S. Sokhansan, J. Tang, P. Winter, Determination of thermal conductivity, specific heat and thermal diffusivity of borage seeds. Biosyst. Eng. 82(2), 169–176 (2002). https://doi.org/10.1006/bioe.2002.0066

    Article  Google Scholar 

  67. M. Božiková, P. Hlaváč, V. Vozárová, Z. Hlaváčová, Ľ Kubík, P. Kotoulek, J. Brindza, Thermal properties of selected bee products. Prog. Agric. Eng. Sci. 14(S1), 37–44 (2018). https://doi.org/10.1556/446.14.2018.S1.4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MSc. Daniel Tapia Maruri from CEPROBI-IPN for the SEM observation, Eng. Marcela Guerrero from CINVESTAV-Zacatenco for the XRD measurement, and the Centro de Nanociencias y Micro y Nanotecnologías-IPN for the ellipsometry calculations.

Funding

No funding supported this study.

Author information

Authors and Affiliations

Authors

Contributions

Zormy Nacary Correa-Pacheco: Conceptualization, Methodology, Formal analysis, Investigation, Writing-original draft, Writing-review & editing. Silvia Bautista-Baños: Visualization, Conceptualization, Methodology, Writing-review & editing. María Luisa Corona-Rangel: Conceptualization, Software, Validation, Data Curation, Formal analysis, Investigation. Rosa Isela Ventura-Aguilar: Supervision, Conceptualization, Methodology, Formal analysis, Investigation, Writing-review & editing. José Luis Jiménez-Pérez: Conceptualization, Methodology. Alfredo Cruz-Orea: Conceptualization, Methodology. Abril Fonseca-García: Conceptualization, Data Curation, Methodology. Genaro López-Gamboa: Data Curation, Methodology. Lilia Ivonne Olvera-Cano: Data Curation, Methodology.

Corresponding author

Correspondence to Zormy Nacary Correa-Pacheco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa-Pacheco, Z.N., Bautista-Baños, S., Corona-Rangel, M.L. et al. Morphological, Optical and Thermal Properties of bioactive-Chitosan Nanostructured Edible Films for Food Packaging Applications. Food Biophysics 19, 207–218 (2024). https://doi.org/10.1007/s11483-023-09818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09818-2

Keywords

Navigation