Skip to main content
Log in

Neuro-Adaptive Formation Control of Nonlinear Multi-Agent Systems With Communication Delays

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The paper focuses on formation control with constant communication delays for second-order, uncertain, nonlinear multi-agents with a nonsymmetric control gain matrix and an unknown control direction. The multi-agent system is modeled using an undirected graph. A three-layer neural network (NN) is employed to approximate an unknown nonlinearity. Unlike a conventional one- or two-layer NN, the three-layer NN allows the user to apriori determine the number of neurons in each layer. In this case, only the weight norms of the two consecutive outer layers are tunable, which alleviates computational complexity. The tuning law is derived using Lyapunov stability theory. The leader-following formation control problem with communication delays is addressed through a delayed integral of error variables, an NN-based control, and a robustifying term. The semi-globally uniformly ultimately bounded (SGUUB) solution of the closed-loop system is rigorously proven using a barrier Lyapunov function. To evaluate the efficiency and performance of the proposed method, simulation results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

References

  1. Wen, G., Chen, C.L.P., Liu, Y.-J., Liu, Z.: Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Transactions on Cybernetics 47(8), 2151–2160 (2017). https://doi.org/10.1109/TCYB.2016.2608499

    Article  Google Scholar 

  2. Wang, G., Wang, C., Li, L., Zhang, Z.: Designing distributed consensus protocols for second-order nonlinear multi-agents with unknown control directions under directed graphs. J. Franklin Inst. 354(1), 571–592 (2017). https://doi.org/10.1016/j.jfranklin.2016.10.034

    Article  MathSciNet  Google Scholar 

  3. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 48(11), 2004–2010 (2003). https://doi.org/10.1109/TAC.2003.819287

    Article  MathSciNet  Google Scholar 

  4. Zhou, Q., Shi, P., Xu, S., Li, H.: Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. 21(2), 301–313 (2013). https://doi.org/10.1109/TFUZZ.2012.2213259

    Article  Google Scholar 

  5. Aryankia, K., Selmic, R.R.: Neuro-adaptive formation control and target tracking for nonlinear multi-agent systems with time-delay. IEEE Control Systems Letters 5(3), 791–796 (2021). https://doi.org/10.1109/LCSYS.2020.3006187

    Article  MathSciNet  Google Scholar 

  6. Ma, L., Min, H., Wang, S., Liu, Y.: Consensus of nonlinear multi-agent systems with self and communication time delays: A unified framework. J. Franklin Inst. 352(3), 745–760 (2015). https://doi.org/10.1016/j.jfranklin.2014.05.010

    Article  MathSciNet  Google Scholar 

  7. Psillakis, H.E.: Adaptive nn cooperative control of unknown nonlinear multiagent systems with communication delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(9), 5311–5321 (2021). https://doi.org/10.1109/TSMC.2019.2950114

    Article  Google Scholar 

  8. Gkesoulis, A.K., Psillakis, H.E., Wang, Q.: Pdi regulation for consensus: Application to unknown pure-feedback agents with state and communication delays. IEEE Transactions on Control of Network Systems 8(4), 1964–1974 (2021). https://doi.org/10.1109/TCNS.2021.3094785

    Article  MathSciNet  Google Scholar 

  9. Zhong, Y., Lyu, G., He, X., Zhang, Y., Ge, S.S.: Distributed active fault-tolerant cooperative control for multiagent systems with communication delays and external disturbances. IEEE Transactions on Cybernetics 53(7), 4642–4652 (2023). https://doi.org/10.1109/TCYB.2021.3133463

    Article  Google Scholar 

  10. Kang, Y., Luo, D., Xin, B., Cheng, J., Yang, T., Zhou, S.: Robust leaderless time-varying formation control for nonlinear unmanned aerial vehicle swarm system with communication delays. IEEE Transactions on Cybernetics 53(9), 5692–5705 (2023). https://doi.org/10.1109/TCYB.2022.3165007

    Article  Google Scholar 

  11. Ding, L., Guo, G.: Sampled-data leader-following consensus for nonlinear multi-agent systems with markovian switching topologies and communication delay. J. Franklin Inst. 352(1), 369–383 (2015). https://doi.org/10.1016/j.jfranklin.2014.10.025

    Article  MathSciNet  Google Scholar 

  12. Subramanian, K., Muthukumar, P., Joo, Y.H.: Leader-following consensus of nonlinear multi-agent systems via reliable control with time-varying communication delay. Int. J. Control Autom. Syst. 17(2), 298–306 (2019). https://doi.org/10.1007/s12555-018-0323-3

    Article  Google Scholar 

  13. Sharifi, M., Yazdanpanah, M.J.: Finite time consensus of nonlinear multi-agent systems in the presence of communication time delays. Eur. J. Control. 53, 10–19 (2020). https://doi.org/10.1016/j.ejcon.2019.10.009

    Article  MathSciNet  Google Scholar 

  14. Izadipour, A., Ghaisari, J., Askari, J.: Distributed robust adaptive flocking for uncertain nonlinear multi-agent systems with time-varying communication delay. Int. J. Syst. Sci. 51(1), 72–86 (2020). https://doi.org/10.1080/00207721.2019.1694196

    Article  MathSciNet  Google Scholar 

  15. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004). https://doi.org/10.1109/TAC.2004.834113

    Article  MathSciNet  Google Scholar 

  16. Sun, Y.G., Wang, L., Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems & Control Letters 57(2), 175–183 (2008). https://doi.org/10.1016/j.sysconle.2007.08.009

    Article  MathSciNet  Google Scholar 

  17. Liu, K., Xie, G., Wang, L.: Consensus for multi-agent systems under double integrator dynamics with time-varying communication delays. Int. J. Robust Nonlinear Control 22(17), 1881–1898 (2012). https://doi.org/10.1002/rnc.1792

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Zhou, J., Li, G., Zhang, J.: Robust formation tracking and collision avoidance for uncertain nonlinear multi-agent systems subjected to heterogeneous communication delays. Neurocomputing 395, 107–116 (2020). https://doi.org/10.1016/j.neucom.2020.02.032

    Article  Google Scholar 

  19. Nussbaum, R.D.: Some remarks on a conjecture in parameter adaptive control. Systems & Control Letters 3(5), 243–246 (1983). https://doi.org/10.1016/0167-6911(83)90021-X

    Article  MathSciNet  Google Scholar 

  20. Xudong, Y., Jingping, J.: Adaptive nonlinear design without a priori knowledge of control directions. IEEE Trans. Autom. Control 43(11), 1617–1621 (1998). https://doi.org/10.1109/9.728882

    Article  MathSciNet  Google Scholar 

  21. Xu, H., Ioannou, P.A.: Robust adaptive control for a class of mimo nonlinear systems with guaranteed error bounds. IEEE Trans. Autom. Control 48(5), 728–742 (2003). https://doi.org/10.1109/TAC.2003.811250

    Article  MathSciNet  Google Scholar 

  22. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on systems, man, and cybernetics, part B (Cybernetics) 34(1), 499–516 (2004). https://doi.org/10.1109/TSMCB.2003.817055

  23. Shi, W.: Adaptive fuzzy control for mimo nonlinear systems with nonsymmetric control gain matrix and unknown control direction. IEEE Trans. Fuzzy Syst. 22(5), 1288–1300 (2014). https://doi.org/10.1109/TFUZZ.2013.2291562

    Article  Google Scholar 

  24. Song, Y., Huang, X., Wen, C.: Robust adaptive fault-tolerant pid control of mimo nonlinear systems with unknown control direction. IEEE Trans. Industr. Electron. 64(6), 4876–4884 (2017). https://doi.org/10.1109/TIE.2017.2669891

    Article  Google Scholar 

  25. Sachan, K., Padhi, R.: Output-constrained robust adaptive control for uncertain nonlinear mimo systems with unknown control directions. IEEE Control Systems Letters 3(4), 823–828 (2019). https://doi.org/10.1109/LCSYS.2019.2919814

    Article  MathSciNet  Google Scholar 

  26. Yu, J., Shi, P., Lin, C., Yu, H.: Adaptive neural command filtering control for nonlinear mimo systems with saturation input and unknown control direction. IEEE Transactions on Cybernetics 50(6), 2536–2545 (2020). https://doi.org/10.1109/TCYB.2019.2901250

    Article  Google Scholar 

  27. Chen, Z.: Nussbaum functions in adaptive control with time-varying unknown control coefficients. Automatica 102, 72–79 (2019). https://doi.org/10.1016/j.automatica.2018.12.035

    Article  MathSciNet  Google Scholar 

  28. Ruan, Z., Yang, Q., Ge, S.S., Sun, Y.: Adaptive fuzzy fault tolerant control of uncertain mimo nonlinear systems with output constraints and unknown control directions. IEEE Trans. Fuzzy Syst. 30(5), 1224–1238 (2022). https://doi.org/10.1109/TFUZZ.2021.3055336

    Article  Google Scholar 

  29. Xia, J., Lian, Y., Su, S.-F., Shen, H., Chen, G.: Observer-based event-triggered adaptive fuzzy control for unmeasured stochastic nonlinear systems with unknown control directions. IEEE Transactions on Cybernetics 52(10), 10655–10666 (2022). https://doi.org/10.1109/TCYB.2021.3069853

    Article  Google Scholar 

  30. Chen, W., Li, X., Ren, W., Wen, C.: Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel nussbaum-type function. IEEE Trans. Autom. Control 59(7), 1887–1892 (2014). https://doi.org/10.1109/TAC.2013.2293452

    Article  MathSciNet  Google Scholar 

  31. Guo, M., Xu, D., Liu, L.: Cooperative output regulation of heterogeneous nonlinear multi-agent systems with unknown control directions. IEEE Trans. Autom. Control 62(6), 3039–3045 (2017). https://doi.org/10.1109/TAC.2016.2609281

    Article  MathSciNet  Google Scholar 

  32. Wang, G., Wang, C., Li, L., Zhang, Z.: Designing distributed consensus protocols for second-order nonlinear multi-agents with unknown control directions under directed graphs. J. Franklin Inst. 354(1), 571–592 (2017). https://doi.org/10.1016/j.jfranklin.2016.10.034

    Article  MathSciNet  Google Scholar 

  33. Tan, L., Li, C., Huang, J.: Neural network-based event-triggered adaptive control algorithms for uncertain nonlinear systems with actuator failures. Cogn. Comput. 12(6), 1370–1380 (2020)

    Article  Google Scholar 

  34. Chen, G., Song, Y.-D.: Cooperative tracking control of nonlinear multiagent systems using self-structuring neural networks. IEEE Transactions on Neural Networks and Learning Systems 25(8), 1496–1507 (2013)

    Article  Google Scholar 

  35. Dierks, T., Jagannathan, S.: Neural network control of mobile robot formations using rise feedback. IEEE Transactions on systems, man, and cybernetics, part B (Cybernetics) 39(2), 332–347 (2009). https://doi.org/10.1109/TSMCB.2008.2005122

  36. De Queiroz, M., Cai, X., Feemster, M.: Formation Control of Multi-Agent Systems: A Graph Rigidity Approach. Wiley & Sons (2019)

  37. Aryankia, K., Selmic, R.R.: Neural network-based formation control with target tracking for second-order nonlinear multiagent systems. IEEE Trans. Aerosp. Electron. Syst. 58(1), 328–341 (2022). https://doi.org/10.1109/TAES.2021.3111719

    Article  Google Scholar 

  38. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  39. Das, A., Lewis, F.L.: Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. Int. J. Robust Nonlinear Control 21(13), 1509–1524 (2011). https://doi.org/10.1002/rnc.1647

    Article  MathSciNet  Google Scholar 

  40. Lewis, F., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press (1998)

  41. Aryankia, K., Selmic, R.R.: Formation control for a class of nonlinear multi-agent systems using three-layer neural networks. In: 2023 American control conference (ACC), pp. 1667–1672 (2023). https://doi.org/10.23919/ACC55779.2023.10155832

  42. Ismailov, V.E.: On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 417(2), 963–969 (2014). https://doi.org/10.1016/j.jmaa.2014.03.092

    Article  MathSciNet  Google Scholar 

  43. Wen, G.-X., Chen, C.P., Liu, Y.-J., Liu, Z.: Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems. IET Control Theory & Applications 9(13), 1927–1934 (2015). https://doi.org/10.1049/iet-cta.2014.1319

    Article  MathSciNet  Google Scholar 

  44. Lui, D.G., Petrillo, A., Santini, S.: Exponential bipartite tracking consensus in cooperative-antagonistic nonlinear multi-agent systems with multiple communication time-varying delays. IFAC Journal of Systems and Control 22, 100209 (2022). https://doi.org/10.1016/j.ifacsc.2022.100209

    Article  MathSciNet  Google Scholar 

  45. Yuan, C., Mao, X.: Robust stability and controllability of stochastic differential delay equations with markovian switching. Automatica 40(3), 343–354 (2004). https://doi.org/10.1016/j.automatica.2003.10.012

    Article  MathSciNet  Google Scholar 

  46. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations 99. (2013)

  47. Scholtes, S.: Introduction to Piecewise Differentiable Equations. (2012)

  48. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier lyapunov function. IEEE Trans. Neural Networks 21(8), 1339–1345 (2010). https://doi.org/10.1109/TNN.2010.2047115

    Article  Google Scholar 

  49. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996). https://doi.org/10.1016/0005-1098(95)00147-6

    Article  MathSciNet  Google Scholar 

  50. Ngo, K.B., Mahony, R., Jiang, Z.-P.: Integrator backstepping using barrier functions for systems with multiple state constraints. In: Proceedings of the 44th IEEE conference on decision and control, pp. 8306–8312 (2005). https://doi.org/10.1109/CDC.2005.1583507

  51. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009). https://doi.org/10.1016/j.automatica.2008.11.017

    Article  MathSciNet  Google Scholar 

  52. Zhang, Y., Liang, H., Ma, H., Zhou, Q., Yu, Z.: Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints. Appl. Math. Comput. 326, 16–32 (2018). https://doi.org/10.1016/j.amc.2017.12.038

    Article  MathSciNet  Google Scholar 

  53. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (2002)

    Google Scholar 

  54. Boulkroune, A., Tadjine, M., M’Saad M., Farza, M.: Fuzzy adaptive controller for mimo nonlinear systems with known and unknown control direction. Fuzzy Sets and Systems 161(6), 797–820 (2010). https://doi.org/10.1016/j.fss.2009.04.011. Theme: "Fuzzy Control"

  55. Labiod, S., Boucherit, M.S., Guerra, T.M.: Adaptive fuzzy control of a class of mimo nonlinear systems. Fuzzy Sets Syst. 151(1), 59–77 (2005). https://doi.org/10.1016/j.fss.2004.10.009

    Article  MathSciNet  Google Scholar 

  56. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides: Control Systems 18. (2013)

  57. Aubin, J.-P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory 264. (2012)

Download references

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grant #RGPIN-2018-05093

Author information

Authors and Affiliations

Authors

Contributions

K. Aryankia contributed to the material preparation, analysis, conceptualization, writing- original draft, visualization, and software. R. R. Selmic performed the supervision, review and editing, resources, and funding acquisition. The authors read and approved the final manuscript

Corresponding author

Correspondence to Kiarash Aryankia.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryankia, K., Selmic, R.R. Neuro-Adaptive Formation Control of Nonlinear Multi-Agent Systems With Communication Delays. J Intell Robot Syst 109, 92 (2023). https://doi.org/10.1007/s10846-023-02018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02018-7

Keywords

Navigation