Skip to main content
Log in

A Sensing Platform Based on Ni/Mn Bimetal-Organic Framework for Electrochemical Detection of Osimertinib

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets of the current study are available from the corresponding author on reasonable request.

References

  1. Y. Li, L. Meng, Y. Ma, Y. Li, X. Xing, C. Guo, Z. Dong, Molecules 27, 4474 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA Cancer J. Clin. 71, 209 (2021)

    Article  PubMed  Google Scholar 

  3. M.N. White, Z. Piotrowska, K. Stirling, S.V. Liu, M.K. Banwait, K. Cunanan, L.V. Sequist, H.A. Wakelee, D. Hausrath, J.W. Neal, Clin. Lung Cancer 22, 201 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z. Yuan, X. Yu, S. Wu, X. Wu, Q. Wang, W. Cheng, W. Hu, C. Kang, W. Yang, Y. Li, X.-Y. Zhou, Front. Pharmacol. 13, 928983 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Ayeni, K. Politi, Clin. Cancer Res. 21, 3818 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C.S. Tan, D. Gilligan, S. Pacey, Lancet Oncol. 16, e447 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Z.M. Karazan, M. Roushani, Talanta 246, 123491 (2022)

  8. J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, J. Mater. Chem. A 2, 19005 (2014)

    Article  CAS  Google Scholar 

  9. S. Rani, S. Kapoor, B. Sharma, S. Kumar, R. Malhotra, N. Dilbaghi, J. Alloys Compd. 816, 152509 (2020)

    Article  CAS  Google Scholar 

  10. L.H. Wang, D.D. Jia, L.J. Yue, K. Zheng, A.T. Zhang, Q. Jia, J.Q. Liu, A.C.S. Appl, Mater. Interfaces 12, 47526 (2020)

    Article  CAS  Google Scholar 

  11. C.K. Gu, W.Z. Wang, J.B. Hu, J. Liu, Fuel 279, 118431 (2020)

    Article  CAS  Google Scholar 

  12. X.H. Cao, C.L. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46, 2660 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. C. Xu, Y. Feng, Z.M. Mao, Y.J. Zhou, L. Liu, W.H. Cheng, J.P. Wang, H. Shi, X. Liu, J. Mater. Sci. Mater. Electron. 30, 19477 (2019)

    Article  CAS  Google Scholar 

  14. L. Liu, Y. Zhou, S. Liu, M. Xu, Chem. Electro. Chem 5, 6 (2018)

    Google Scholar 

  15. X. Kang, Y. Ma, J. Wang, X. Shi, B. Liu, F. Ran, J. Mater. Sci. Mater. Electron. 32, 13430 (2021)

    Article  CAS  Google Scholar 

  16. K. Tian, Y. Ma, Y. Liu, M. Wang, C. Guo, L. He, Y. Song, Z. Zhang, M. Du, Sens Actuators B Chem 303, 127199 (2020)

    Article  CAS  Google Scholar 

  17. F. Su, Q. Jia, Z. Li, M. Wang, L. He, D. Peng, Micropor Mesopor Mat 275, 152 (2019)

    Article  CAS  Google Scholar 

  18. A.M. Abdel-Aziz, H.H. Hassan, I.H.A. Badr, ACS Omega 7, 34127 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Z. Rahmati, M. Roushani, H. Hosseini, Sens Actuators B Chem 324, 128730 (2020)

    Article  CAS  Google Scholar 

  20. S. Sundriyal, S. Mishra, A. Deep, Energy Procedia 158, 5817 (2019)

    Article  CAS  Google Scholar 

  21. H. Hu, X. Lou, C. Li, X. Hu, T. Li, Q. Chen, M. Shen, B. Hu, New J. Chem. 40, 9746 (2016)

    Article  CAS  Google Scholar 

  22. J. Li, J. Li, D. Yan, S. Hou, X. Xu, T. Lu, Y. Yao, W. Mai, L. Pan, J. Mater. Chem. A 6, 6595 (2018)

    Article  CAS  Google Scholar 

  23. G. Zou, H. Hou, X.Y. Cao, P. Ge, G. Zhao, Y. Dulin, X. Ji, J. Mater. Chem. A 5, 23550 (2017)

    Article  CAS  Google Scholar 

  24. W. Cheng, X.F. Lu, D. Luan, D.X.W. Lou, Angew. Chem. Int. Ed. 59, 18234 (2020)

    Article  CAS  Google Scholar 

  25. X. Ma, K. Tang, M. Yang, W. Shi, W. Zhao, J. Mater. Sci. 56, 442 (2020)

    Article  Google Scholar 

  26. S. Farokhi, M. Roushani, H. Hosseini, Electrochim. Acta 362, 137218 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the College of Science, Department of Chemistry, Ilam University and the Central Laboratories Directorate, Iraqi Atomic Energy Commission. This study is supported by the College of Science, Department of Chemistry, Ilam University.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Mirzaei Karazan: resources, investigation, writing original draft, data curation. Mahmoud Roushani: supervision, conceptualization, methodology, validation, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karazan, Z.M., Roushani, M. A Sensing Platform Based on Ni/Mn Bimetal-Organic Framework for Electrochemical Detection of Osimertinib. Electrocatalysis 15, 110–119 (2024). https://doi.org/10.1007/s12678-023-00857-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00857-4

Keywords

Navigation