Skip to main content
Log in

Effect of Pulsed Plasma Beams on the Structure and Mechanical Properties of the Surface Layer in an Inconel 718 Alloy

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The influence of pulsed helium ion (HI) and helium plasma (HP) fluxes on an Inconel 718 alloy fabricated by an additive technology via selective laser melting and subsequent heat treatment is studied. The structural changes in the surface layer (SL) after irradiation are analyzed for two different modes: soft (at radiation power density q = 2 × 108 W/cm2 and pulse duration τ = 50 ns) and hard (at q = 1.5 × 109 W/cm2, τ = 25 ns). The number of pulses in each mode is N = 10 and 20. Both before and after irradiation, the structure of the alloy is found to be a single-phase solid solution based on nickel with an fcc lattice. The action of pulsed HI and HP fluxes on the alloy changes its texture from initial 〈220〉 to the 〈111〉 direction. This texture change promotes plastic deformation in the irradiated SL. During this process, slip occurs primarily along the {111} planes in fcc metals subjected to thermal stresses. The irradiation conditions affect the lattice parameters of the alloy. Soft HI and HP irradiation reduces lattice parameter a as compared to the initial value, which can be caused by residual macrostresses and the evaporation of impurity atoms located in interstitial lattice sites from SL. Hard mode irradiation increases parameter a mainly due to the influence of helium ion implantation, which promotes its growth. The observed structural changes in the SL of the alloy are shown to decrease the microhardness and to soften the remelted layer. A numerical simulation is used to estimate the role of thermal and shock-wave effects in the plastic deformation and the structural changes in SL under the applied irradiation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Promising Radiation-Beam Technologies for Material Treatment (Kruglyi God, Moscow, 2001).

    Google Scholar 

  2. G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).

    Google Scholar 

  3. W. Wang, J. Roth, S. Lindig, and C. Wu, “Blister formation of tungsten due to ion bombardment,” J. Nucl. Mater. 299 (2), 124–131 (2001).

    Article  CAS  Google Scholar 

  4. S. Saw, V. Damideh, J. Ali, R. Rawat, P. Lee, and S. Lee, “Damage study of irradiated tungsten using fast focus mode of a 2.2 kJ plasma focus,” Vacuum 144, 14–20 (2017).

    Article  CAS  Google Scholar 

  5. J. Paju, T. Laas, J. Priimets, V. Berit, V. Shirokova, and K. Laas, “On the effects of different regimes of plasma pulses affecting the material due to their succession,” Nucl. Mater. Energy. 18, 312–320 (2019).

    Article  Google Scholar 

  6. I. M. Poznyak, N. S. Klimov, V. L. Podkovyrov, V. M. Safronov, A. M. Zhitlukhin, and D. V. Kovalenko, “Erosion of metals subjected to severe plasma fluxes,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 4, 23–33 (2012).

    Google Scholar 

  7. A. S. Chaus, A. V. Maksimenko, N. N. Fedosenko, Ĺ. Čaplovič, and V. N. Myshkovets, “Formation of structure of a high-speed steel upon laser surface melting,” Phys. Metals Metallogr. 120, 269–277 (2019).

    Article  CAS  Google Scholar 

  8. V. A. Gribkov, S. V. Latyshev, V. N. Pimenov, S. A. Maslyaev, E. V. Demina, A. S. Demin, E. V. Morozov, N. A. Epifanov, E. E. Kazilin, and I. P. Sasinovskaya, “Features of metal destruction under pulsed laser and beam-plasma exposure,” Inorg. Mater. Appl. Res. 12, 361–369 (2021).

    Article  Google Scholar 

  9. M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technologies in Mechanical Engineering (Politekh. Univ., St. Petersburg, 2013).

    Google Scholar 

  10. Sc. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics,” Addit. Manuf. 8, 36–62 (2015).

  11. N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).

    Google Scholar 

  12. T. DebRoy, H. L. Wei, J. S. Zuback, and T. Mukherjee, “Additive manufacturing of metallic components—process, structure and properties,” Prog. Mater. Sci., 92, 112–224 (2018).

    Article  Google Scholar 

  13. T. D. Ngo, A. Kashani, G. Imbalzano, and K. T. Nguyen, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites B: Eng., No. 143, 172–196 (2018).

  14. I. N. Fridlyander, O. G. Senatorova, and O. E. Osintsev, Nonferrous Metals and Alloys. Composite Metallic Materials, Ed. by I. N. Fridlyander (Mashinostroenie, Moscow, 2003), Vol. II-3.

    Google Scholar 

  15. E. N. Kablov and E. R. Golubovskii, Heat Resistance of Nickel Alloys (Mashinostroenie, Moscow, 1998).

    Google Scholar 

  16. L. P. Babentsova and I. V. Antsiferova, “Mechanical properties of In718 alloy during static and cyclic deformation,” Sovrem. Naukoemkie Tekhnol., No. 6, 14–19 (2019).

    Google Scholar 

  17. M. Yu. Gryaznov, S. V. Shotin, and V. N. Chuvil’deev, “Physico-mechanical properties and structure of inconel 718 alloy obtained by selective laser melting technology,” Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, No. 4 (1), 46–51 (2014).

    Google Scholar 

  18. M. V. Rashkovets, A. A. Nikulina, O. G. Klimova-Korsmik, K. D. Babkin, O. E. Matts, and M. Matstsarizi, “Investigation of phase composition of Inconel 718 nickel alloy fabricated by additive technology,” Obrab. Met. (Techn. Oborud. Instrum.) 22 (3), 69–81 (2020).

  19. M. V. Rashkovets, N. G. Kislov, A. A. Nikulina, and O. G. Klimova-Korsmik, “Effect of heat treatment on the structure, phase composition and impact toughness of Inconel 718 alloy under additive manufacturing,” Fotonika 15 (7), 568–575 (2021).

    Google Scholar 

  20. I. V. Borovitskaya, V. A. Gribkov, K. V. Grigorovich, A. S. Demin, S. A. Maslyaev, E. V. Morozov, V. N. Pimenov, G. S. Sprygin, A. B. Tsepelev, M. S. Gusakov, I. A. Logachev, G. G. Bondarenko, and A. I. Gaidar, “Effect of pulsed helium ion fluxes and helium plasma on the Inconel 718 alloy,” Russ. Metall. (Metally) 2018, 826–834 (2018).

    Article  Google Scholar 

  21. I. V. Borovitskaya, A. S. Demin, S. V. Latyshev, S. A. Maslyaev, I. S. Monakhov, E. V. Morozov, V. N. Pimenov, I. P. Sasinovskaya, G. G. Bondarenko, and A. I. Gaidar, “Damage of the surface layer of Inconel 718 alloy by pulsed beam-plasma fluxes” Fiz. Khim. Obrab. Mater., No. 2, 5–17 (2023).

  22. GOST (State Standard) 8.904–2015 (ISO 14 577-2:2015): Instrumented Indentation Test for Hardness and Materials Parameters (Standartinform, Moscow, 2016).

  23. GOST R ISO (State Standard) 6507-1–2007 Metals and Alloys. Vickers Hardness Measurements. Part 1. Measurement Technique (Standartinform, Moscow, 2008).

  24. S. A. Maslyaev, “Thermal effects during pulse irradiation of materials in the Plasma Focus plant,” Perspekt. Mater., No. 5, 47–55 (2007).

    Google Scholar 

  25. V. A. Gribkov, S. V. Latyshev, S. A. Maslyaev, and V. N. Pimenov, “Numerical modeling of interaction of pulsed energy fluxes with material in plasma focus plants,” Fiz. Khim. Obrab. Mater., No. 6, 16–22 (2011).

  26. I. V. Borovitskaya, V. N. Pimenov, S. A. Maslyaev, A. B. Mikhailova, G. G. Bondarenko, E. V. Matveev, A. I. Gaidar, M. Padukh, A. S. Demin, N. A. Epifanov, and E. V. Morozov, “Effect of high-temperature pulsed deuterium plasma on the structure and mechanical properties of the surface of Cu–Ga and Cu–Ga–Ni alloys,” Russ. Metall. (Metally), No. 1, 48–56 (2022). https://doi.org/10.1134/S0036029522010050

  27. Yu. A. Perlovich, M. M. Grekhov, M. G. Isaenkova, V. V. Fesenko, B. A. Kalin, and V. L. Yakushin, “Change in structure and texture in the cladding tubes’ volume of zirconium-based alloys in ion-plasma treatment of the surface,” Vopr. At. Nauki Tekh., Ser. Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 85 (3), 59–65 (2004).

    Google Scholar 

  28. S. V. Latyshev, V. A. Gribkov, S. A. Maslyaev, and V. N. Pimenov, “Generation of shock waves in materials science experiments with dense plasma focus device,” Inorg. Mater. Appl. Res. 6, 91–95 (2015).

    Article  Google Scholar 

  29. Physical Values: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Mikhailov (Energoizdat, Moscow, 1991).

    Google Scholar 

  30. A. A. Pedash, N. A. Lysenko, V. V. Klochikhin, and V. G. Shilo, “Structure and properties of Inconel 718 alloy samples prepared using selective laser melting technique,” Aviatsionnokosmich. Tekh. Technol. 143 (8), 46–54 (2017).

    Google Scholar 

Download references

Funding

This work was performed within state assignment no. 075-00715-22-00 and supported by the International Atomic Energy Agency (project IAEA CRP nos. 23664 and 24080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Borovitskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovitskaya, I.V., Demin, A.S., Komolova, O.A. et al. Effect of Pulsed Plasma Beams on the Structure and Mechanical Properties of the Surface Layer in an Inconel 718 Alloy. Russ. Metall. 2023, 891–898 (2023). https://doi.org/10.1134/S0036029523070030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523070030

Navigation