Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 8, 2023

Gamma-radiation levels along the main Karakorum thrust area of Northern Pakistan

  • Mohammad Wasim ORCID logo EMAIL logo , Arfan Tariq and Manzoor Ali
From the journal Radiochimica Acta

Abstract

In this contribution, the distribution of naturally occurring radionuclides in the area around Main Karakoram Thrust (MKT) in Karakoram Range, North Pakistan is documented. Three natural radionuclides (226Ra, 232Th, and 40K) and one anthropogenic radionuclide (137Cs) were studied for their specific activities in 30 samples. The measurements were made by high resolution gamma-ray spectrometry. The sampling area is located in Gilgit Baltistan province of Pakistan at an altitude of 1838 m/6030 ft above sea level. MKT separates the Karakoram plate from the Kohistan-Ladakh Terranes and Indian Plate to the south. The specific activity varied as 4.5–56.5 Bq kg−1, 18.2–61.4 Bq kg−1, 1.4–19.6 Bq kg−1 and 51–1640 Bq kg−1 for 226Ra, 232Th, 137Cs and 40K, respectively. The average radium equivalent activity was 127.8 ± 45.9 Bq kg−1. The external hazard index was <1 for all samples and representative level index was <1 for majority of the samples. The average air absorbed dose rate was 60.9 ± 23.2 nGy h−1 corresponding to the outdoor effective dose rate of 73.7 ± 28.0 μSv y−1. These values were slightly higher than the world average values for air absorbed dose rate (51 nGy h−1) and outdoor annual effective dose rate (70 μSv y−1). The data revealed significant positive correlation between 226Ra and 40K. Principal component analysis revealed distribution patterns within the samples and identified three distinct groups. Data was also evaluated for the concentrations of uranium, thorium and potassium and their ratios.


Corresponding author: Mohammad Wasim, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan, E-mail:

  1. Research ethics: Not applicable.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. United Nations Scientific Committee on the Effects of Atomic Radiation. Annex B: exposures from natural radiation sources. In UNSCEAR-2000, Effects of Atomic Radiation to the General Assembly; United Nations: New York, 2000.Search in Google Scholar

2. Shahbazi-Gahrouei, D., Gholami, M., Setayandeh, S. A review on natural background radiation. Adv. Biomed. Res. 2013, 2, 1; https://doi.org/10.4103/2277-9175.115821.Search in Google Scholar PubMed PubMed Central

3. Orgün, Y., Altinsoy, N., Sahin, S. Y., Güngör, Y., Gültekin, A. H., Karahan, G., Karacik, Z. Natural and anthropogenic radionuclides in rocks and beach sands from ezine region (çanakkale), Western Anatolia, Turkey. Appl. Radiat. Isot. 2007, 65, 739; https://doi.org/10.1016/j.apradiso.2006.06.011.Search in Google Scholar PubMed

4. Carvalho, C., Anjos, R., Veiga, R., Macario, K. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J. Environ. Radioact. 2011, 102, 185; https://doi.org/10.1016/j.jenvrad.2010.11.011.Search in Google Scholar PubMed

5. Hedrick, J. B. The global rare-earth cycle. J. Alloys Compd. 1995, 225, 609; https://doi.org/10.1016/0925-8388(94)07134-9.Search in Google Scholar

6. Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: New York, 2011.10.1201/b10158Search in Google Scholar

7. Borrero, F., Scelsi Hess, F., Hsu Gerhard Kunze, J., Leslie, S. A., Michael Manga, S. L., Sharp, L., Snow, T., Zike, D. National Geographic: Earth Science; McGraw Hill: New York, 2008.Search in Google Scholar

8. Yasmin, S., Barua, B. S., Uddin Khandaker, M., Kamal, M., Abdur Rashid, M., Abdul Sani, S. F., Ahmed, H., Nikouravan, B., Bradley, D. A. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys. 2018, 8, 1268; https://doi.org/10.1016/j.rinp.2018.02.013.Search in Google Scholar

9. Ramasamy, V., Paramasivam, K., Suresh, G., Jose, M. T. Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamilnadu, India--spectroscopical approach. Spectrochim. Acta, Part A 2014, 117, 340; https://doi.org/10.1016/j.saa.2013.08.022.Search in Google Scholar PubMed

10. Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., Ponnusamy, V. A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J. Environ. Radioact. 2011, 102, 370; https://doi.org/10.1016/j.jenvrad.2011.02.003.Search in Google Scholar PubMed

11. Biegalski, S. R., Hosticka, B., Mason, L. R. Cesium-137 concentrations, trends, and sources observed in Kuwait City. Kuwait. J. Radioanal. Nucl. Chem. 2001, 248, 643; https://doi.org/10.1023/a:1010676208657.10.1023/A:1010676208657Search in Google Scholar

12. UNSCEAR. Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. In UNSCEAR-2008; United Nations: New York, 2001.Search in Google Scholar

13. Searle, M. P. Geological evolution of the Karakoram ranges. Ital. J. Geosci. 2011, 130, 147.Search in Google Scholar

14. Ali, M., Wasim, M., Arif, M., Zaidi, J. H., Anwar, Y., Saif, F. Determination of the natural and anthropogenic radioactivity in the soil of Gilgit—a town in the foothills of Hindukush range. Health Phys. 2010, 98, S69; https://doi.org/10.1097/hp.0b013e3181c9f0a9.Search in Google Scholar

15. Buccianti, A., Apollaro, C., Bloise, A., De Rosa, R., Falcone, G., Scarciglia, F., Tallarico, A., Vecchio, G. Natural radioactivity levels (K, Th, U and Rn) in the Cecita Lake area (Sila Massif, Calabria, Southern Italy): an attempt to discover correlations with soil features on a statistical base. Geoderma 2009, 152, 145; https://doi.org/10.1016/j.geoderma.2009.05.027.Search in Google Scholar

16. Tzortzis, M., Tsertos, H., Christofides, S., Christodoulides, G. Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat. Meas. 2003, 37, 221; https://doi.org/10.1016/s1350-4487(03)00028-3.Search in Google Scholar

17. Rex, A. J., Searle, M. P., Tirrul, R., Crawford, M. B., Prior, D. J., Rex, D. C., Barnicoat, A. The geochemical and tectonic evolution of the central Karakoram, North Pakistan. Philos. Trans. R. Soc., A 1988, 326, 229.Search in Google Scholar

18. Le Fort, P., Michard, A., Sonet, J., Zimmermann, J.-L. Petrography, geochemistry and geochronology of some samples from the Karakorum Axial Batholith (northern Pakistan). In Granites of Himalayas Karakorum and Hindu Kush; Institute of Geology, Punjab University: Lahore, 1983; pp. 377–387.Search in Google Scholar

19. Wasim, M., Arif, M. Statistical data analysis of gamma-ray background spectra for quality assurance purposes. Nucleus 2010, 47, 55.Search in Google Scholar

20. Wasim, M. GammaLab: a suite of programs for k0 -NAA and gamma-ray spectrum analysis. J. Radioanal. Nucl. Chem. 2010, 285, 337; https://doi.org/10.1007/s10967-010-0562-0.Search in Google Scholar

21. Zeb, J., Wasim, M., Rashid, A., Arshed, W. Radiological mapping of the area around two research reactors in Islamabad. J. Radioanal. Nucl. Chem. 2015, 306, 451; https://doi.org/10.1007/s10967-015-4200-8.Search in Google Scholar

22. Gilmore, G. Practical Gamma-Ray Spectroscopy; John Wiley & Sons: Queensland, 2011.Search in Google Scholar

23. Beretka, J., Mathew, P. J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87; https://doi.org/10.1097/00004032-198501000-00007.Search in Google Scholar PubMed

24. Lu, X., Zhang, X., Wang, F. Natural radioactivity in sediment of Wei river, China. Environ. Geol. 2007, 53, 1475; https://doi.org/10.1007/s00254-007-0756-0.Search in Google Scholar

25. Veiga, R., Sanches, N., Anjos, R. M., Macario, K., Bastos, J., Iguatemy, M., Aguiar, J. G., Santos, A. M. A., Mosquera, B., Carvalho, C., Baptista Filho, M., Umisedo, N. K. Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas. 2006, 41, 189; https://doi.org/10.1016/j.radmeas.2005.05.001.Search in Google Scholar

26. International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection; ICRP Publication No. 60: Pergamon Press, Oxford, 1991.Search in Google Scholar

27. Malczewski, D., Teper, L., Dorda, J. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry. J. Environ. Radioact. 2004, 73, 233; https://doi.org/10.1016/j.jenvrad.2003.08.010.Search in Google Scholar PubMed

28. International Atomic Energy Agency. TECDOC-1363 Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; IAEA: Vienna, 2003.Search in Google Scholar

29. Eisenbud, M., Gesell, T. F. Environmental Radioactivity from Natural, Industrial and Military Sources: From Natural, Industrial and Military Sources; Elsevier: San Diego, 1997.10.1016/B978-012235154-9/50010-4Search in Google Scholar

30. Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111; https://doi.org/10.1016/0009-2541(94)90085-x.Search in Google Scholar

31. Miller, J. N., Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 5th ed., 2005.10.1002/9780470988459.ch8Search in Google Scholar

32. Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons: Chichester, 2003.10.1002/0470863242Search in Google Scholar

33. Shah, S. A., Wasim, M. Mass attenuation coefficients of IAEA soil standards at different gamma-ray energies. Nucleus 2020, 57, 62.Search in Google Scholar

34. John, C., Cleveland, W., Kleiner, B., Tukey, P. Methods for Data Analysis; Wadsworth & Brooks: Cole, CA, 1983.Search in Google Scholar

35. Wasim, M., Shah, S. A., Tariq, A., Ali, M. Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan. Radiochim. Acta 2021, 109, 925; https://doi.org/10.1515/ract-2021-1043.Search in Google Scholar

36. Wasim, M., Ali, M., Iqbal, S. Assessment of the risk associated with the gamma-emitting radionuclides from the soil of two cities in Central Karakorum. J. Radioanal. Nucl. Chem. 2015, 303, 985; https://doi.org/10.1007/s10967-014-3613-0.Search in Google Scholar

37. Plant, J. A., Saunders, A. D. The radioactive earth. Radiat. Prot. Dosim. 1996, 68, 25; https://doi.org/10.1093/oxfordjournals.rpd.a031847.Search in Google Scholar

38. Ali, M., Bano, S., Qureshi, J. A., Wasim, M., Khan, G., Begum, F., Alam, M. Indoor and outdoor gamma radiation level in mud and concrete houses and the annual effective dose and excess life time cancer risk in Gahkuch Ghizer valley of Hindukush Range. J. Himalayan Earth Sci. 2019, 52, 177.Search in Google Scholar

39. Ali, M., Iqbal, S., Wasim, M., Arif, M., Saif, F. Soil radioactivity levels and radiological risk assessment in the highlands of Hunza, Pakistan. Radiat. Prot. Dosim. 2012, 153, 390; https://doi.org/10.1093/rpd/ncs102.Search in Google Scholar PubMed

40. Ali, M., Wasim, M., Iqbal, S., Arif, M., Saif, F. Determination of the risk associated with the natural and anthropogenic radionuclides from the soil of Skardu in Central Karakoram. Radiat. Prot. Dosim. 2013, 156, 213; https://doi.org/10.1093/rpd/nct057.Search in Google Scholar PubMed

41. Miah, F. K., Roy, S., Touhiduzzaman, M., Alam, B. Distribution of radionuclides in soil samples in and around Dhaka City. Appl. Radiat. Isot. 1998, 49, 133; https://doi.org/10.1016/s0969-8043(97)00232-7.Search in Google Scholar

42. Lu, J., Huang, Y., Li, F., Wang, L., Li, S., Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP. China. J. Environ. Radioact. 2006, 90, 89; https://doi.org/10.1016/j.jenvrad.2006.06.002.Search in Google Scholar PubMed

43. Kamath, R. R., Menon, M. R., Shukla, V. K., Sadasivan, S., Nambi, K. S. V. Natural and fallout radioactivity measure of Indian soils by gamma spectrometric technique. In Fifth National Symposium on Environmental Issues Related to Mining, Milling and Metallurgy; VECC and SINP: Calcutta, 1996.Search in Google Scholar

44. Abdi, M. R., Faghihian, H., Mostajaboddavati, M., Hasanzadeh, A., Kamali, M. Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. J. Radioanal. Nucl. Chem. 2006, 270, 319; https://doi.org/10.1007/s10967-006-0351-y.Search in Google Scholar

45. Saad, H. R., Al-Azmi, D. Radioactivity concentrations in sediments and their correlation to the coastal structure in Kuwait. Appl. Radiat. Isot. 2002, 56, 991; https://doi.org/10.1016/s0969-8043(02)00061-1.Search in Google Scholar PubMed

46. Marčiulionienė, D., Lukšienė, B., Montvydienė, D., Jefanova, O., Mažeika, J., Taraškevičius, R., Stakėnienė, R., Petrošius, R., Maceika, E., Tarasiuk, N., Žukauskaitė, Z. 137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: a case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP). J. Environ. Radioact. 2017, 178, 253.10.1016/j.jenvrad.2017.07.024Search in Google Scholar PubMed

47. Karakelle, B., Ozturk, N., Kose, A., Varinlioglu, A., Erkol, A. Y., Yılmaz, F. Natural radioactivity in soil samples of Kocaeli Basin, Turkey. J. Radioanal. Nucl. Chem. 2002, 254, 649.10.1023/A:1021635415222Search in Google Scholar

48. Gastberger, M., Steinhäusler, F., Gerzabek, M. H., Hubmer, A., Lettner, H. 90Sr and 137Cs in environmental samples from Dolon near the semipalatinsk nuclear test site. Health Phys. 2000, 79, 257; https://doi.org/10.1097/00004032-200009000-00005.Search in Google Scholar PubMed

49. Yamamoto, M., Hoshi, M., Takada, J., Sakaguchi, A., Apsalikov, K. N., Gusev, B. I. Current levels and distribution of 137Cs and Pu isotopes in soil on the Kazakhstan territory of the Kazakhstan-Chinese border: semipalatinsk and Lob Nor nuclear test sites detonation. J. Radioanal. Nucl. Chem. 2004, 261, 533. https://doi.org/10.1023/b:jrnc.0000037093.74415.7e.10.1023/B:JRNC.0000037093.74415.7eSearch in Google Scholar

50. Wasim, M., Iqbal, S., Ali, M. Radiological and elemental analysis of soils from Hunza in Central Karakoram using gamma-ray spectrometry and k 0-instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2015, 307, 891; https://doi.org/10.1007/s10967-015-4220-4.Search in Google Scholar

Received: 2023-09-06
Accepted: 2023-11-21
Published Online: 2023-12-08
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0229/html
Scroll to top button