Skip to main content
Log in

Non-linear dynamics and emergent statistical regularity in classical Lennard–Jones three-body system upon disturbance

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Understanding the deep connection of microscopic dynamics and statistical regularity yields insights into the foundation of statistical mechanics. In this work, based on the classical three-body system under the Lennard–Jones potential upon disturbance, we illustrated the elusive non-linear dynamics in terms of the neat frequency-mixing processes, and revealed the emergent statistical regularity in speed distribution along a single particle trajectory. This work demonstrates the promising possibility of classical few-body models for exploring the fundamental questions on the interface of microscopic dynamics and statistical physics.

Graphical abstract

The non-linear dynamics of the perturbed three-body system is analyzed in terms of the neat frequency-mixing processes, and the statistical regularity in the speed distribution along a single particle trajectory is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T.Y. Li, J.A. Yorke, Am. Math. Mon. 82(10), 985 (1975)

    Article  Google Scholar 

  2. C. Cercignani et al., Ludwig Boltzmann: the man who trusted atoms (Oxford University Press, Oxford, 1998)

    Google Scholar 

  3. L.P. Kadanoff, From order to chaos II (World Scientific, 1999)

    Book  Google Scholar 

  4. H.S. Dumas, The KAM story (World Scientific Publishing Company, 2014)

    Book  Google Scholar 

  5. N.S. Krylov, Works on the foundations of statistical physics (Princeton University Press, 2014)

    Google Scholar 

  6. C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al., Nat. Phys. 12(11), 1037 (2016)

    Article  Google Scholar 

  7. I.G. Sinai, Dynamical systems II (Springer, 1989)

    Book  Google Scholar 

  8. R. Zwanzig, Nonequilibrium statistical mechanics (Oxford University Press, 2001)

    Book  Google Scholar 

  9. S.H. Strogatz, Nonlinear dynamics and chaos (CRC Press, 2018)

    Book  Google Scholar 

  10. F. Scheck, Mechanics: from Newton’s laws to deterministic chaos (Springer Science and Business Media, 2010)

    Book  Google Scholar 

  11. B. Yang, J. Pérez-Ríos, F. Robicheaux, Phys. Rev. Lett. 118(15), 154101 (2017)

    Article  ADS  Google Scholar 

  12. L. Tonks, Phys. Rev. 50(10), 955 (1936)

    Article  ADS  Google Scholar 

  13. Z. Zheng, G. Hu, J. Zhang, Phys. Rev. E 53(4), 3246 (1996)

    Article  ADS  Google Scholar 

  14. S. Cox, G. Ackland, Phys. Rev. Lett. 84(11), 2362 (2000)

    Article  ADS  Google Scholar 

  15. X. Cao, V.B. Bulchandani, J.E. Moore, Phys. Rev. Lett. 120(16), 164101 (2018)

    Article  ADS  Google Scholar 

  16. G.M. Zaslavsky, The physics of chaos in hamiltonian systems (World Scientific, 2007)

    Book  Google Scholar 

  17. J.E. Jones, Proc. R. Soc. Lon. Ser. A 106(738), 463 (1924)

    Article  ADS  Google Scholar 

  18. Z. Yao, Soft Matter 13(35), 5905 (2017)

    Article  ADS  Google Scholar 

  19. W. Kob, H.C. Andersen, Phys. Rev. E 51(5), 4626 (1995)

    Article  ADS  Google Scholar 

  20. N. Xu, M. Wyart, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 98(17), 175502 (2007)

    Article  ADS  Google Scholar 

  21. S. Rützel, S.I. Lee, A. Raman, Proc. R. Soc. Lon. Ser. A 459(2036), 1925 (2003)

    Article  ADS  Google Scholar 

  22. H. Fukuda, T. Fujiwara, H. Ozaki, J. Phys. A: Math. Theor. 50(10), 105202 (2017)

    Article  ADS  Google Scholar 

  23. A. Rahman, Phys. Rev. 136(2A), A405 (1964)

    Article  ADS  Google Scholar 

  24. A.F. Tillack, L.E. Johnson, B.E. Eichinger, B.H. Robinson, J. Chem. Theory Comput. 12(9), 4362 (2016)

    Article  Google Scholar 

  25. P. Bienias, M.J. Gullans, M. Kalinowski, A.N. Craddock, D.P. Ornelas-Huerta, S.L. Rolston, J. Porto, A.V. Gorshkov, Phys. Rev. Lett. 125(9), 093601 (2020)

    Article  ADS  Google Scholar 

  26. B. Halperin, D.R. Nelson, Phys. Rev. Lett. 41(2), 121 (1978)

  27. K.J. Strandburg, Rev. Mod. Phys. 60(1), 161 (1988)

    Article  ADS  Google Scholar 

  28. N.P. Mitchell, V. Koning, V. Vitelli, W. Irvine, Nat. Mater 16, 89–93 (2017)

  29. Z. Yao, Phys. Rev. E 96(6), 062139 (2017)

    Article  ADS  Google Scholar 

  30. H. Hwang, D.A. Weitz, F. Spaepen, Proc. Natl. Acad. Sci. U.S.A. 116(4), 1180 (2019)

  31. T. Vicsek, A. Zafeiris, Phys. Rep. 517(3), 71 (2012)

  32. V. Schaller, A.R. Bausch, Proc. Natl. Acad. Sci. U.S.A. 110(12), 4488 (2013)

    Article  ADS  Google Scholar 

  33. N.H. Nguyen, D. Klotsa, M. Engel, S.C. Glotzer, Phys. Rev. Lett. 112(7), 075701 (2014)

    Article  ADS  Google Scholar 

  34. Z. Yao, Phys. Rev. Lett. 122(22), 228002 (2019)

    Article  ADS  Google Scholar 

  35. E. Fermi, P. Pasta, S. Ulam, M. Tsingou, Studies of the nonlinear problems (Tech. rep, Los Alamos Scientific Lab, 1955)

    Book  Google Scholar 

  36. O. Saporta Katz, E. Efrati, Phys. Rev. Lett. 122, 024102 (2019)

    Article  ADS  Google Scholar 

  37. O. Saporta Katz, E. Efrati, Phys. Rev. E 101, 032211 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. J.C. Maxwell, Philos. Mag. 19(124), 19 (1860)

    Article  Google Scholar 

  39. See Supplemental Material for technical details of the numerical approach, and supplemental information about trajectory evolution, frequency spectrum analysis of kinetic energy and statistical analysis of particle trajectories

  40. D. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  41. Z. Yao, Europhys. Lett. 133, 54002 (2021)

    Article  ADS  Google Scholar 

  42. D. Sundararajan, The discrete Fourier transform: theory, algorithms and applications (World Scientific, 2001)

    Book  Google Scholar 

  43. E.G. Altmann, A.E. Motter, H. Kantz, Phys. Rev. E 73(2), 026207 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.S. Chirkin, A.A. Novikov, G.D. Laptev, J. Opt. B 6(6), S483 (2004)

    Article  ADS  Google Scholar 

  45. L.D. Landau, E. Lifshitz, Mechanics, 3rd edn. (Butterworth-Heinemann, Oxford, 1976)

    Google Scholar 

  46. M. Feigenbaum, J. Stat. Phys. 19(1), 25 (1978)

    Article  ADS  Google Scholar 

  47. A.S. De Wijn, A. Fasolino, J. Phys. Condens. Matter 21(26), 264002 (2009)

    Article  ADS  Google Scholar 

  48. D.G. Saari, Z. Xia, Notices AMS 42(5), 538–546 (1995)

    Google Scholar 

  49. V. Rom-Kedar, D. Turaev, arXiv:2208.14993 (2022)

  50. B. Gaveau, L.S. Schulman, Eur. Phys. J. Spec. Top. 224, 891 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. BC4190050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwei Yao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2786 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z. Non-linear dynamics and emergent statistical regularity in classical Lennard–Jones three-body system upon disturbance. Eur. Phys. J. B 96, 159 (2023). https://doi.org/10.1140/epjb/s10051-023-00626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00626-8

Navigation