Skip to main content
Log in

Regulation of Metabolism and the Role of Redox Factors in the Energy Control of Quiescence and Proliferation of Hematopoietic Cells

  • REDOX REGULATION OF METABOLIC PROCESSES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—One of the key regulators of hematopoietic stem cell (HSC) maintenance is cellular metabolism. Resting HSCs use anaerobic glycolysis as the main source of energy. During expansion and differentiation under conditions of steady state hematopoiesis, the energy needs of activated HSCs increase by many fold. To meet the increased demands, cells switch to mitochondrial oxidative phosphorylation, which is accompanied by an increase in reactive oxygen species (ROS) production. Here, the molecular mechanisms maintaining glycolysis in HSCs, as well as the factors determining the increase in metabolic activity and the transition to mitochondrial biogenesis during HSC activation are discussed. We focus on the role of HIF (hypoxia-inducible factor) proteins as key mediators of the cellular response to hypoxia, and also consider the phenomenon of extraphysiological oxygen shock (EPHOSS), leading to the forced differentiation of HSCs as well as methods of overcoming it. Finally, the role of fatty acid oxidation (FAO) in hematopoiesis is discussed. Understanding the metabolic needs of normal HSCs and precursors is crucial for the development of new treatments for diseases related to the hematopoietic and immune systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kaushansky K. 2006. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354 (19), 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  2. Doulatov S., Notta F., Laurenti E., Dick J.E. 2012. Hematopoiesis: A human perspective. Cell Stem Cell. 10 (2), 120–136.

    Article  CAS  PubMed  Google Scholar 

  3. Watson C.J., Papula A.L., Poon G.Y.P., Wong W.H., Young A.L., Druley T.E., Fisher D.S., Blundell J.R. 2020. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science. 367 (6485), 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  4. Cheshier S.H., Morrison S.J., Liao X., Weissman I.L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 96 (6), 3120–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng T., Rodrigues N., Shen H., Yang Y.G., Dombkowski D., Sykes M., Scadden D.T. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 287 (5459), 1804–1809.

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K.L., Ema H., Nakauchi H. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 154 (5).

  7. Höfer T., Rodewald H.R. 2018. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 132 (11), 1106–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun J., Ramos A., Chapman B., Johnnidis J.B., Le L., Ho Y.J., Klein A., Hofmann O., Camargo F.D. 2014. Clonal dynamics of native haematopoiesis. Nature. 514 (7522), 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jang Y.Y., Sharkis S.J. 2007. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 110 (8), 3056–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y., Fang S., Ding Q., Jiang R., He J., Wang Q., Jin Y., Huang X., Liu S., Capitano M.L., Trinh T., Teng Y., Meng Q., Wan J., Broxmeyer H.E., Guo B. 2021. ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Invest. 131 (20).

  11. D’Souza L.C., Kuriakose N., Raghu S.V., Kabekkodu S.P., Sharma A. 2022. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radical Biol. Med. 193 (Pt. 1), 190–201.

    Article  Google Scholar 

  12. Jakubison B.L., Sarkar T., Gudmundsson K.O., Singh S., Sun L., Morris H.M., Klarmann K.D., Keller J.R. 2022. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J. Clin. Invest. 132 (13), e152599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan B., Li C., Yang Y., Lu Y., Sun Y., Su L., Shi G., Bai L., Liu J., Meng A. 2023. Effect of spermidine on radiation-induced long-term bone marrow cell injury. Int. Immunopharmacol. 114, 109557.

    Article  CAS  PubMed  Google Scholar 

  14. Aires R., Porto M.L., de Assis L.M., Pereira P.A.N., Carvalho G.R., Côco L.Z., Vasquez E.C., Pereira T.M.C., Campagnaro B.P., Meyrelles S.S. 2021. DNA damage and aging on hematopoietic stem cells: Impact of oxidative stress in ApoE−/− mice. Exp. Gerontol. 156, 111607.

    Article  CAS  PubMed  Google Scholar 

  15. Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Côté D., Vinogradov S.A., Scadden D.T., Lin C.P. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 508 (7495), 269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simsek T., Kocabas F., Zheng J., Deberardinis R.J., Mahmoud A.I., Olson E.N., Schneider J.W., Zhang C.C., Sadek H.A. 2010. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 7 (3), 380–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suda T., Takubo K., Semenza G.L. 2011. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9 (4), 298–310.

    Article  CAS  PubMed  Google Scholar 

  18. Semenza G.L. 2001. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7 (8), 345–350.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Flores A., Aguilar-Quesada R., Siles E., Pozo S., Rodríguez-Lara M.I., López-Jiménez L., López-Rodríguez M., Peralta-Leal A., Villar D., Martín-Oliva D., Del Peso L., Berra E., Oliver F.J. 2014. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene. 33 (7), 891–898.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P., Yao Q., Lu L., Li Y., Chen P.J., Duan C. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6 (6), 1110–1121.

    Article  CAS  PubMed  Google Scholar 

  21. Semenza G.L., Wang G.L. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12 (12), 5447–5454.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang G.L., Semenza G.L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chemistry. 268 (29), 21513–21518.

    Article  CAS  Google Scholar 

  23. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92 (12), 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenza G.L. 2004. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda). 19 (4), 176–182.

    Article  CAS  PubMed  Google Scholar 

  25. Schödel J., Ratcliffe P.J. 2019. Mechanisms of hypoxia signalling: New implications for nephrology. Nat. Rev. Nephrol. 15 (10), 641–659.

    Article  PubMed  Google Scholar 

  26. Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Von Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. 2001. Targeting of HIF-α to the von Hippel−Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292 (5516), 468–472.

    Article  CAS  PubMed  Google Scholar 

  27. Schödel J., Klanke B., Weidemann A., Buchholz B., Bernhardt W., Bertog M., Amann K., Korbmacher C., Wiesener M., Warnecke C., Kurtz A., Eckardt K.U., Willam C. 2009. HIF-prolyl hydroxylases in the rat kidney: Physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174 (5), 1663–1674.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Appelhoffl R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. 2004. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279 (37), 38458–38465.

    Article  Google Scholar 

  29. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. 2002. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 295 (5556), 858–861.

    Article  CAS  PubMed  Google Scholar 

  30. Koivunen P., Hirsilä M., Günzler V., Kivirikko K.I., Myllyharju J. 2004. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279 (11), 9899–9904.

    Article  CAS  PubMed  Google Scholar 

  31. Kaelin W.G., Ratcliffe P.J. 2008. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell. 30 (4), 393–402.

    Article  CAS  PubMed  Google Scholar 

  32. Arany Z., Huang L.E., Eckner R., Bhattacharya S., Jiang C., Goldberg M.A., Bunn H.F., Livingston D.M. 1996. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. U. S. A. 93 (23), 12969–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kietzmann T., Mennerich D., Dimova E.Y. 2016. Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mottet D., Dumont V., Deccache Y., Demazy C., Ninane N., Raes M., Michiels C. 2003. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J. Biol. Chem. 278 (33), 31277–31285.

    Article  CAS  PubMed  Google Scholar 

  35. Du S.C., Zhu L., Wang Y.X., Liu J., Zhang D., Chen Y.L., Peng Q., Liu W., Liu B. 2019. SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response. Cancer Cell Int. 19, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu D., Yao Y., Lu L., Costa M., Dai W. 2010. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem. 285 (50), 38944–38950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li C., Park S., Zhang X., Dai W., Xu D. 2017. Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel. J. B-iol. Chem. 292 (27), 11431–11444.

    Article  CAS  Google Scholar 

  38. Aquino Perez C., Palek M., Stolarova L., von Morgen P., Macurek L. 2020. Phosphorylation of PLK3 is controlled by protein phosphatase 6. Cells. 9 (6), 1506.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Warfel N.A., Dolloff N.G., Dicker D.T., Malysz J., El-Deiry W.S. 2013. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle. 12 (23), 3689–3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neckers L. 2022. Oxygen-independent, CDK4/CDK6-dependent degradation of hypoxia-inducible factor-1α takes cancers’ breath away. Oncotarget. 13, 16–17.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bullen J.W., Tchernyshyov I., Holewinski R.J., Devine L., Wu F., Venkatraman V., Kass D.L., Cole R.N., Van Eyk J., Semenza G.L. 2016. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci. Signal. 9 (430), ra56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lucia K., Wu Y., Garcia J.M., Barlier A., Buchfelder M., Saeger W., Renner U., Stalla G.K., Theodoropoulou M. 2020. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene. 39 (16), 3367–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong J.W., Bae M.K., Ahn M.Y., Kim S.H., Sohn T.K., Bae M.H., Yoo M.A., Song E.J., Lee K.J., Kim K.W. 2002. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 111 (5), 709–720.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J., Niu C., Ye L., Huang H., He X., Tong W.G., Ross J., Haug J., Johnson T., Feng J.Q., Harris S., Wiedemann L.M., Mishina Y., Li L. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425 (6960), 836–841.

    Article  CAS  PubMed  Google Scholar 

  45. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425 (6960), 841–846.

    Article  CAS  PubMed  Google Scholar 

  46. Mohyeldin A., Garzón-Muvdi T., Quiñones-Hinojosa A. 2010. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell. 7 (2), 150–161.

    Article  CAS  PubMed  Google Scholar 

  47. Nombela-Arrieta C., Pivarnik G., Winkel B., Canty K.J., Harley B., Mahoney J.E., Park S.Y., Lu J., Protopopov A., Silberstein L.E. 2013. Quantitative imaging of hematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15 (5), 533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parmar K., Mauch P., Vergilio J.A., Sackstein R., Down J.D. 2007. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U. S. A. 104 (13), 5431–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kunisaki Y., Bruns I., Scheiermann C., Ahmed J., Pinho S., Zhang D., Mizoguchi T., Wei Q., Lucas D., Ito K., Mar J.C., Bergman A., Frenette P.S. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502 (7473), 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Méndez-Ferrer S., Michurina T. V., Ferraro F., Mazloom A.R., MacArthur B.D., Lira S.A., Scadden D.T., Ma’ayan A., Enikolopov G.N., Frenette P.S. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 466 (7308), 829–834.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., Shima H., Johnson R.S., Hirao A., Suematsu M., Suda T. 2010. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell. 7 (3), 391–402.

    Article  CAS  PubMed  Google Scholar 

  52. Takubo K., Nagamatsu G., Kobayashi C.I., Nakamura-Ishizu A., Kobayashi H., Ikeda E., Goda N., Rahimi Y., Johnson R.S., Soga T., Hirao A., Suematsu M., Suda T. 2013. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 12 (1), 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito K., Suda T. 2014. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15 (4), 243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu W.M., Liu X., Shen J., Jovanovic O., Pohl E.E., Gerson S.L., Finkel T., Broxmeyer H.E., Qu C.K. 2013. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell. 12 (1), 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ito K., Hirao A., Arai F., Matsuoka S., Takubo K., Hamaguchi I., Nomiyama K., Hosokawa K., Sakurada K., Nakagata N., Ikeda Y., Mak T.W., Suda T. 2004. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 431 (7011), 997–1002.

    Article  CAS  PubMed  Google Scholar 

  56. Norddahl G.L., Pronk C.J., Wahlestedt M., Sten G., Nygren J.M., Ugale A., Sigvardsson M., Bryder D. 2011. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell. 8 (5), 499–510.

    Article  CAS  PubMed  Google Scholar 

  57. Piccoli C., D’Aprile A., Scrima R., Ripoli M., Boffoli D., Tabilio A., Capitanio N. 2007. Role of reactive oxygen species as signal molecules in the pre-commitment phase of adult stem cells. Ital. J. Biochem. 56 (4), 295‒301.

    PubMed  Google Scholar 

  58. Inoue S.I., Noda S., Kashima K., Nakada K., Hayashi J.I., Miyoshi H. 2010. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett. 584 (15), 3402–3409.

    Article  CAS  PubMed  Google Scholar 

  59. Vannini N., Girotra M., Naveiras O., Nikitin G., Campos V., Giger S., Roch A., Auwerx J., Lutolf M.P. 2016. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7, 13125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mistry J.J., Bowles K., Rushworth S.A. 2023. HSC-derived fatty acid oxidation in steady-state and stressed hematopoiesis. Exp. Hematol. 117, 1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3 (3), 177–185.

    Article  PubMed  Google Scholar 

  62. Guitart A.V., Subramani C., Armesilla-Diaz A., Smith G., Sepulveda C., Gezer D., Vukovic M., Dunn K., Pollard P., Holyoake T.L., Enver T., Ratcliffe P.J., Kranc K.R. 2013. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood. 122 (10), 1741–1745.

    Article  CAS  PubMed  Google Scholar 

  63. Vukovic M., Sepulveda C., Subramani C., Guitart A.V., Mohr J., Allen L., Panagopoulou T.I., Paris J., Lawson H., Villacreces A., Armesilla-Diaz A., Gezer D., Holyoake T.L., Ratcliffe P.J., Kranc K.R. 2016. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood. 127 (23), 2841–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kocabas F., Zheng J., Thet S., Copeland N.G., Jenkins N.A., DeBerardinis R.J., Zhang C., Sadek H.A. 2012. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood. 120 (25), 4963–4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y.H., Israelsen W.J., Lee D., Yu V.W.C., Jeanson N.T., Clish C.B., Cantley L.C., Vander Heiden M.G., Scadden D.T. 2014. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 158 (6), 1309–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morganti C., Cabezas-Wallscheid N., Ito K. 2022. Metabolic regulation of hematopoietic stem cells. Hemasphere. 6 (7), e740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Motohashi H., Yamamoto M. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10 (11), 549–557.

    Article  CAS  PubMed  Google Scholar 

  68. Okawa H., Motohashi H., Kobayashi A., Aburatani H., Kensler T.W., Yamamoto M. 2006. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem. Biophys. Res. Commun. 339 (1), 79–88.

    Article  CAS  PubMed  Google Scholar 

  69. Goto M., Kitamura H., Alam M.M., Ota N., Haseba T., Akimoto T., Shimizu A., Takano-Yamamoto T., Yamamoto M., Motohashi H. 2015. Alcohol dehydrogenase 3 contributes to the protection of liver from nonalcoholic steatohepatitis. Genes Cells. 20 (6), 464–480.

    Article  CAS  PubMed  Google Scholar 

  70. Honkura Y., Matsuo H., Murakami S., Sakiyama M., Mizutari K., Shiotani A., Yamamoto M., Morita I., Shinomiya N., Kawase T., Katori Y., Motohashi H. 2016. NRF2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci. Rep. 6, 19329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murakami S., Suzuki T., Harigae H., Romeo P.-H., Yamamoto M., Motohashi H. 2017. NRF2 activation impairs quiescence and bone marrow reconstitution capacity of hematopoietic stem cells. Mol. Cell Biol. 37 (19), e00086-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mantel C.R., O’Leary H.A., Chitteti B.R., Huang X., Cooper S., Hangoc G., Brustovetsky N., Srour E.F., Lee M.R., Messina-Graham S., Haas D.M., Falah N., Kapur R., Pelus L.M., Bardeesy N., Fitamant J., Ivan M., Kim K.S., Broxmeyer H.E. 2015. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 161 (7), 1553–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., Bobbins J., Molkentin J.D. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 434 (7033), 658–662.

    Article  CAS  PubMed  Google Scholar 

  74. Broxmeyer H.E., O’Leary H.A., Huang X., Mantel C. 2015. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr. Opin. Hematol. 22 (4), 273–278. https://doi.org/10.1097/MOH.0000000000000144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Broxmeyer H.E. 2016. Enhancing the efficacy of engraftment of cord blood for hematopoietic cell transplantation. Transfus. Apher. Sci. 54 (3), 364.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aljoufi A., Cooper S., Broxmeyer H.E. 2020. Collection and processing of mobilized mouse peripheral blood at lowered oxygen tension yields enhanced numbers of hematopoietic stem cells. Stem Cell Rev. Rep. 16 (5), 946.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Broxmeyer H.E., Capitano M.L., Cooper S., Potchanant E.S., Clapp D.W. 2021. Numbers of long-term hematopoietic stem cells from bone marrow of fanca and fancc knockout mice can be greatly enhanced by their collection and processing in physioxia conditions. Blood Cells Mol. Dis. 86, 102492.

    Article  CAS  PubMed  Google Scholar 

  78. Aljoufi A., Zhang C., Ropa J., Chang W., Palam L.R., Cooper S., Ramdas B., Capitano M.L., Broxmeyer H.E., Kapur R. 2022. Physioxia-induced downregulation of Tet2 in hematopoietic stem cells contributes to enhanced self-renewal. Blood. 140 (11), 1263–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Broxmeyer H.E., Ropa J., Capitano M.L., Cooper S., Racioppi L., Sankar U. 2022. CaMKK2 knockout bone marrow cells collected/processed in low oxygen (Physioxia) suggests CaMKK2 as a hematopoietic stem to progenitor differentiation fate determinant. Stem Cell Rev. Rep. 18 (7), 2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Capitano M.L., Mohamad S.F., Cooper S., Guo B., Huang X., Gunawan A.M., Sampson C., Ropa J., Srour E.F., Orschell C.M., Broxmeyer H.E. 2021. Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. J. Clin. Invest. 131 (1), e140177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai Q., Capitano M., Huang X., Guo B., Cooper S., Broxmeyer H.E. 2018. Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air. Blood Cells Mol. Dis. 71, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mohrin M., Widjaja A., Liu Y., Luo H., Chen D. 2018. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell. 17 (3), e12756.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mohrin M., Shin J., Liu Y., Brown K., Luo H., Xi Y., Haynes C.M., Chen D. 2015. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 347 (6228), 1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang H., Ryu D., Wu Y., Gariani K., Wang X., Luan P., D’Amico D., Ropelle E.R., Lutolf M.P., Aebersold R., Schoonjans K., Menzies K.J., Auwerx J. 2016. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 352 (6292), 1436–1443.

    Article  CAS  PubMed  Google Scholar 

  85. Naka K., Muraguchi T., Hoshii T., Hirao A. 2008. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid. Redox Signal. 10 (11), 1883–1894.

    Article  CAS  PubMed  Google Scholar 

  86. Chen C., Liu Y., Liu R., Ikenoue T., Guan K.L., Liu Y., Zheng P. 2008. TSC‒mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205 (10), 2397–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qian P., He X.C., Paulson A., Li Z., Tao F., Perry J.M., Guo F., Zhao M., Zhi L., Venkatraman A., Haug J.S., Parmely T., Li H., Dobrowsky R.T., Ding W.X., Kono T., Ferguson-Smith A.C., Li L. 2016. The Dlk1‒Gtl2 locus preserves LT-HSC function by inhibiting the PI3K‒mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 18 (2), 214–228.

    Article  CAS  PubMed  Google Scholar 

  88. Boettcher S., Manz M.G. 2017. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 38 (5), 345–357.

    Article  CAS  PubMed  Google Scholar 

  89. Silberstein L., Goncalves K.A., Kharchenko P. V., Turcotte R., Kfoury Y., Mercier F., Baryawno N., Severe N., Bachand J., Spencer J.A., Papazian A., Lee D., Chitteti B.R., Srour E.F., Hoggatt J., Tate T., Lo Celso C., Ono N., Nutt S., Heino J., Sipilä K., Shioda T., Osawa M., Lin C.P., Hu G.F., Scadden D.T. 2016. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 19 (4), 530–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ziegler P., Boettcher S., Takizawa H., Manz M.G., Brümmendorf T.H. 2016. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Ann. Hematol. 95 (2), 173–178.

    Article  CAS  PubMed  Google Scholar 

  91. Mistry J.J., Marlein C.R., Moore J.A., Hellmich C., Wojtowicz E.E., Smith J.G.W., Macaulay I., Sun Y., Morfakis A., Patterson A., Horton R.H., Divekar D., Morris C.J., Haestier A., Palma F. Di, Beraza N., Bowles K.M., Rushworth S.A. 2019. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl. Acad. Sci. U. S. A. 116 (49), 24610–24619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kiel M.J., Yilmaz Ö.H., Iwashita T., Yilmaz O.H., Terhorst C., Morrison S.J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121 (7), 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  93. Luo S.T., Zhang D.M., Qin Q., Lu L., Luo M., Guo F.C., Shi H.S., Jiang L., Shao B., Li M., Yang H.S., Wei Y.Q. 2017. The promotion of erythropoiesis via the regulation of reactive oxygen species by lactic acid. Sci. Rep. 7 (1), 38105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Horton E.S, Beisel W.R 1994. The metabolic responses to stress and physical activity. In Food Components to Enhance Performance: An Evaluation of Potential Performance-Enhancing Food Components for Operational Rations. Marriott B.M., Ed. Washington: Natl. Acad. Press, p. 529.

    Google Scholar 

  95. Pearce E.L., Pearce E.J. 2013. Metabolic pathways in immune cell activation and quiescence. Immunity. 38 (4), 633–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pfeiffer T., Schuster S., Bonhoeffer S. 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science. 292 (5516), 504–507.

    Article  CAS  PubMed  Google Scholar 

  97. Ito K., Carracedo A., Weiss D., Arai F., Ala U., Avigan D.E., Schafer Z.T., Evans R.M., Suda T., Lee C.H., Pandolfi P.P. 2012. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18 (9), 1350–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ito K., Turcotte R., Cui J., Zimmerman S.E., Pinho S., Mizoguchi T., Arai F., Runnels J.M., Alt C., Teruya-Feldstein J., Mar J.C., Singh R., Suda T., Lin C.P., Frenette P.S., Ito K. 2016. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 354 (6316), 1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mistry J.J., Hellmich C., Moore J.A., Jibril A., Macaulay I., Moreno-Gonzalez M., Di Palma F., Beraza N., Bowles K.M., Rushworth S.A. 2021. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12 (1), 7130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takakuwa T., Nakashima Y., Koh H., Nakane T., Nakamae H., Hino M. 2019. Short-term fasting induces cell cycle arrest in immature hematopoietic cells and increases the number of naïve T cells in the bone marrow of mice. Acta Haematol. 141 (3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  101. Tiwari S.K., Toshniwal A.G., Mandal S., Mandal L. 2020. Fatty acid β-oxidation is required for the differentiation of larval hematopoietic progenitors in Drosophila. Elife. 9, e53247.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State task of the Ministry of Science and Higher Education of the Russian Federation (state registration number of the topic—122092200053-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants or animals as research subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations. ROS, reactive oxygen species; HPCs, hematopoietic progenitor cells; HSC, hematopoietic stem cells; MSCs, mesenchymal stem cells; EPHOSS, extraphysiological oxygen shock/stress; FAO (fatty acid oxidation), oxidation of fatty acids; FFA, free fatty acids; FIH, a factor that inhibits HIF; HIF, hypoxia-induced factor; OXPHOS, oxidative phosphorylation; PDK, pyruvate dehydrogenase kinase; PHD, prolyl hydroxylase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnikova, M.V., Polyakova, N.S. & Belyavsky, A.V. Regulation of Metabolism and the Role of Redox Factors in the Energy Control of Quiescence and Proliferation of Hematopoietic Cells. Mol Biol 57, 1165–1175 (2023). https://doi.org/10.1134/S0026893323060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060080

Keywords:

Navigation