Skip to main content
Log in

The Redox-Catalytic Properties of Cobalamins

  • THE ROLE OF REDOX-DEPENDENT PROTEINS IN THE IMPLEMENTATION OF REDOX-REGULATION OF CELLS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Vitamin B12, or cobalamin, is essential for normal body function and is used in the therapies of different diseases. Vitamin B12 has anti-inflammatory and antioxidant properties that can play an important role in the prevention of some diseases. On the other hand, it has been reported that vitamin B12 in combination with such reducing agents as ascorbate (vitamin C) and thiols showed prooxidant activity. This review provides information on the roles of vitamin B12 in diseases accompanied by inflammation and oxidative stress and the effects of vitamin B12 administrated alone and in combinations with different reducing agents such as ascorbate and thiols on oxidative stress. In addition, the mechanisms of prooxidant actions of combinations of vitamin B12 with these reducing agents depending on the form of vitamin B12 (hydroxocobalamin and cyanocobalamin) are discussed. Understanding the mechanisms of prooxidant action of vitamin B12 is necessary for developing strategies for therapeutic administration of vitamin B12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. McCaddon A., Hudson P.R. 2010. L-Methylfolate, methylcobalamin, and N -acetylcysteine in the treatment of Alzheimer’s disease-related cognitive decline. CNS Spectr. 15, 2–5.

    Article  PubMed  Google Scholar 

  2. Regland B., Forsmark S., Halaouate L., Matousek M., Peilot B., Zachrisson O., Gottfries C.-G. 2015. Re-sponse to vitamin B12 and folic acid in myalgic encephalomyelitis and fibromyalgia. PLoS One. 10, e0124648.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wheatley C. 2006. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med. Hypotheses. 67, 124–142.

    Article  CAS  PubMed  Google Scholar 

  4. Patel J.J., Willoughby R., Peterson J., Carver T., Zelten J., Markiewicz A., Spiegelhoff K., Hipp L.A., Canales B., Szabo A., Heyland D.K., Stoppe C., Zielonka J., Freed J.K. 2023. High-dose IV hydroxocobalamin (vitamin B12) in septic shock. Chest. 163, 303–312.

    Article  CAS  PubMed  Google Scholar 

  5. Kalra S., Ahuja R., Mutti E., Veber D., Seetharam S., Scalabrino G., Seetharam B. 2007. Cobalamin-mediated regulation of transcobalamin receptor levels in rat organs. Arch. Biochem. Biophys. 463, 128–132.

    Article  CAS  PubMed  Google Scholar 

  6. Rothenberg S.P., Quadros E.V., Regec A. 1999. Transcobalamin II. In Chemistry and Biochemistry of Vitamin B12. Banerjee R., Ed. New York: Wiley,  441–473.

    Google Scholar 

  7. Pastore A., Martinelli D., Piemonte F., Tozzi G., Boenzi S., Di Giovamberardino G., Petrillo S., Bertini E., Dionisi-Vici C. 2014. Glutathione metabolism in cobalamin deficiency type C (cblC). J. Inherit. Metab. Dis. 37, 125–129.

    Article  CAS  PubMed  Google Scholar 

  8. Shatalin Y.V., Shubina V.S., Solovieva M.E., Akatov V.S. 2022. Differences in the formation of reactive oxygen species and their cytotoxicity between thiols combined with aqua- and cyanocobalamins. Int. J. Mol. Sci. 23, 11032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brayfield A. 2014. Martindale: The Complete Drug Reference. London, UK: Pharm Press.

    Google Scholar 

  10. Xia L., Cregan A.G., Berben L.A., Brasch N.E. 2004. Studies on the formation of glutathionylcobalamin: Any free intracellular aquacobalamin is likely to be rapidly and irreversibly converted to glutathionylcobalamin. Inorg. Chem. 43, 6848–6857.

    Article  CAS  PubMed  Google Scholar 

  11. Wingert V., Mukherjee S., Esser A.J., Behringer S., Tanimowo S., Klenzendorf M., Derevenkov I.A., Makarov S.V., Jacobsen D.W., Spiekerkoetter U., Hannibal L. 2021. Thiolatocobalamins repair the activity of pathogenic variants of the human cobalamin processing enzyme CblC. Biochimie. 183, 108–125.

    Article  CAS  PubMed  Google Scholar 

  12. Salnikov D.S., Kucherenko P.N., Dereven’kov I.A., Makarov S.V., van Eldik R. 2014. Kinetics and mechanism of the reaction of hydrogen sulfide with cobalamin in aqueous solution. Eur. J. Inorg. Chem. 2014, 852–862.

    Article  CAS  Google Scholar 

  13. Suarez-Moreira E., Hannibal L., Smith C.A., Chavez R.A., Jacobsen D.W., Brasch N.E. 2006. A simple, convenient method to synthesize cobalamins: Synthesis of homocysteinylcobalamin, N-acetylcysteinylcobalamin, 2-N-acetylamino-2-carbomethoxyethanethiolatocobalamin, sulfitocobalamin and nitrocobalamin. Dalton Trans. Camb. Engl. 2003. 5269–5277.

    Article  Google Scholar 

  14. Paul C., Brady D.M. 2017. Comparative bioavailability and utilization of particular forms of B12 supplements with potential to mitigate B12-related genetic polymorphisms. Integr. Med. Encinitas Calif. 16, 42–49.

    Google Scholar 

  15. Zhang Y., Hodgson N., Trivedi M., Deth R. 2016. Neuregulin 1 promotes glutathione-dependent neuronal cobalamin metabolism by stimulating cysteine uptake. Oxid. Med. Cell. Longev. 2016, 1–13.

    Google Scholar 

  16. Pezacka E., Green R., Jacobsen D.W. 1990. Glutathionylcobalamin as an intermediate in the formation of cobalamin coenzymes. Biochem. Biophys. Res. Commun. 169, 443–450.

    Article  CAS  PubMed  Google Scholar 

  17. George P., Irvine D.H., Glauser S.C. 2006. The influence of chelation in determining the reactivity of the iron in hemoproteins. and the cobalt in vitamin B12 derivatives. Ann. N.Y. Acad. Sci. 88, 393–415.

    Article  Google Scholar 

  18. Green R., Allen L.H., Bjørke-Monsen A.L., Brito A., Guéant J.L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B.H., Ueland P.M., Yajnik C. 2017. Correction: Vitamin B12 deficiency. Nat. Rev. Dis. Primer. 3, 17040.

    Article  Google Scholar 

  19. Esser A.J., Mukherjee S., Dereven’kov I.A., Makarov S.V., Jacobsen D.W., Spiekerkoetter U., Hannibal L. 2022. Versatile enzymology and heterogeneous phenotypes in cobalamin complementation type C disease. iScience. 25, 104981.

  20. Rizzo G., Laganà A.S. 2020. A review of vitamin B12. In Molecular Nutrition. Elsevier, pp. 105–129.

    Google Scholar 

  21. Obeid R., Fedosov S.N., Nexo E. 2015. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin deficiency. Mol. Nutr. Food Res. 59, 1364–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Froese D.S., Gravel R.A. 2010. Genetic disorders of vitamin B12 metabolism: Eight complementation groups–eight genes. Expert. Rev. Mol. Med. 12, e37.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bassila C., Ghemrawi R., Flayac J., Froese D.S., Baumgartner M.R., Guéant J.-L., Coelho D. 2017. Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Biochim. Biophys. Acta, Mol. Basis Dis. 1863, 103–112.

    Article  CAS  Google Scholar 

  24. Ankar A., Kumar A. 2023. Vitamin B12 deficiency. In StatPearls. Treasure Island (FL): StatPearls.

    Google Scholar 

  25. Joint Formulary Committee (Great Britain) 2020. BNF 80: September 2020March 2021. London: BMJ Group, Pharmaceutical Press.

  26. Vidal-Alaball J., Butler C., Cannings-John R., Goringe A., Hood K., McCaddon A., McDowell I., Papaioannou A. 2005. Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst. Rev. 3, Ed. Cochrane Metabolic and Endocrine Disorders Group. CD004655.

  27. Clinical Recommendations “Vitamin-B12-Deficiency Anemia” 2021, developed by the National Hematological Society, the National Society of Pediatric Hematologists and Oncologists. Approved by the Ministry of Health of the Russian Federation. https://cr.minzdrav.gov.ru/schema/536_2.

  28. Anon. 2008 Physicians’ Desk Reference: PDR 2008. 62nd. ed. Montvale, N.J.: Thomson Healthcare, p. 3480.

    Google Scholar 

  29. Forsyth J.C., Mueller P.D., Becker C.E., Osterloh J., Benowitz N.L., Rumack B.H., Hall A.H. 1993. Hydroxocobalamin as a cyanide antidote: Safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. J. Toxicol. Clin. Toxicol. 31, 277–294.

    Article  CAS  PubMed  Google Scholar 

  30. Bak M.A., Smith J.A., Murfin B., Chen Y. 2022. High-dose hydroxocobalamin for refractory vasoplegia post cardiac surgery. Cureus. 14 (8), e28267.23.

  31. Andersson H.C., Shapira E. 1998. Biochemical and clinical response to hydroxocobalamin versus cyanocobalamin treatment in patients with methylmalonic acidemia and homocystinuria (cblC). J. Pediatr. 132, 121–124.

    Article  CAS  PubMed  Google Scholar 

  32. Bodamer O.A.F., Rosenblatt D.S., Appel S.H., Beaudet A.L. 2001. Adult-onset combined methylmalonic aciduria and homocystinuria (cblC). Neurology. 56, 1113–1113.

    Article  CAS  PubMed  Google Scholar 

  33. Huemer M., Diodato D., Schwahn B., Schiff M., Bandeira A., Benoist J.F., Burlina A., Cerone R., Couce M.L., Garcia-Cazorla A., la Marca G., Pasquini E., Vilarinho L., Weisfeld-Adams J.D., Kožich V., Blom H., Baumgartner M.R., Dionisi-Vici C. 2017. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J. Inherit. Metab. Dis. 40, 21–48.

    Article  CAS  PubMed  Google Scholar 

  34. Almannai M., Marom R., Divin K., Scaglia F., Sutton V.R., Craigen W.J., Lee B., Burrage L.C., Graham B.H. 2017. Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening. Mol. Genet. Metab. 122, 60–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Higashimoto T., Kim A.Y., Ogawa J.T., Sloan J.L., Almuqbil M.A., Carlson J.M., Manoli I., Venditti C.P., Gunay-Aygun M., Wang T. 2020. High dose hydroxocobalamin achieves biochemical correction and improvement of neuropsychiatric deficits in adults with late onset cobalamin C deficiency. JIMD Rep. 51, 17–24.

    Article  PubMed  Google Scholar 

  36. Fischer S., Huemer M., Baumgartner M., Deodato F., Ballhausen D., Boneh A., Burlina A.B., Cerone R., Garcia P., Gökçay G., Grünewald S., Häberle J., Jaeken J., Ketteridge D., Lindner M., Mandel H., Martinelli D., Martins E.G., Schwab K.O., Gruenert S.C., Schwahn B.C., Sztriha L., Tomaske M., Trefz F., Vilarinho L., Rosenblatt D.S., Fowler B., Dionisi-Vici C. 2014. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J. Inherit. Metab. Dis. 37, 831–840.

    Article  CAS  PubMed  Google Scholar 

  37. Carrillo-Carrasco N., Sloan J., Valle D., Hamosh A., Venditti C.P. 2009. Hydroxocobalamin dose escalation improves metabolic control in cblC. J. Inherit. Metab. Dis. 32, 728–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Hove J.L., Van Damme-Lombaerts R., Grünewald S., Peters H., Van Damme B., Fryns J.P., Arnout J., Wevers R., Baumgartner E.R., Fowler B. 2002. Cobalamin disorder cblC presenting with late-onset thrombotic microangiopathy. Am. J. Med. Genet. 111, 195–201.

    Article  PubMed  Google Scholar 

  39. Matos I.V., Castejón E., Meavilla S., O’Callaghan M., Garcia-Villoria J., López-Sala A., Ribes A., Artuch R., Garcia-Cazorla A. 2013. Clinical and biochemical out-come after hydroxocobalamin dose escalation in a series of patients with cobalamin C deficiency. Mol. Genet. Metab. 109, 360–365.

    Article  CAS  PubMed  Google Scholar 

  40. Scalabrino G., Carpo M., Bamonti F., Pizzinelli S., D’Avino C., Bresolin N., Meucci G., Martinelli V., Comi G.C., Peracchi M. 2004. High tumor necrosis factor-alfa in levels in cerebrospinal fluid of cobalamin-deficient patients. Ann. Neurol. 56, 886–890.

    Article  PubMed  Google Scholar 

  41. Tamura J., Kubota K., Murakami H., Sawamura M., Matsushima T., Tamura T., Saitoh T., Kurabayshi H., Naruse T. 1999. Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment: Vit.B12 augments CD8+ cells and NK cell activity. Clin. Exp. Immunol. 116, 28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veber D., Mutti E., Tacchini L., Gammella E., Tredici G., Scalabrino G. 2008. Indirect down-regulation of nuclear NF-κB levels by cobalamin in the spinal cord and liver of the rat. J. Neurosci. Res. 86, 1380–1387.

    Article  CAS  PubMed  Google Scholar 

  43. Mottram L., Speak A.O., Selek R.M., Cambridge E.L., McIntyre Z., Kane L., Mukhopadhyay S., Grove C., Colin A., Brandt C., Duque-Correa M.A., Forbester J., Nguyen T.A., Hale C., Vasilliou G.S., Arends M.J., Wren B.W., Dougan G., Clare S. 2016. Infection susceptibility in gastric intrinsic factor (vitamin B12)-defective mice is subject to maternal influences. mBio. 7, e00830-16. https://doi.org/10.1128/mBio.00830-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vellema P., Rutten V.P.M.G., Hoek A., Moll L., Wentink G.H. 1996. The effect of cobalt supplementation on the immune response in vitamin B12 deficient Texel lambs. Vet. Immunol. Immunopathol. 55, 151–161.

    Article  CAS  PubMed  Google Scholar 

  45. Kochkin A.A., Yavorovsky A.G., Berikashvili L.B., Likhvantsev V.V. 2020. Modern vasopressor therapy for septic shock (review). Obsch. Reanimatol. 16, 77‒93.

    Article  Google Scholar 

  46. Misra U.K., Kalita J., Singh S.K., Rahi S.K. 2017. Oxidative stress markers in vitamin B12 deficiency. Mol. Neurobiol. 54, 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  47. Li F., Bahnson E.M., Wilder J., Siletzky R., Hagaman J., Nickekeit V., Hiller S., Ayesha A., Feng L., Levine J.S., Takahashi N., Maeda-Smithies N. 2020. Oral high dose vitamin B12 decreases renal superoxide and post-ischemia/reperfusion injury in mice. Redox Biol. 32, 101504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrianova N.V., Zorov D.B., Plotnikov E.Y. 2020. Targeting inflammation and oxidative stress as a therapy for ischemic kidney injury. Biochemistry (Moscow). 85, 1591–602.

    Article  CAS  PubMed  Google Scholar 

  49. Gherasim C., Ruetz M., Li Z., Hudolin S., Banerjee R. 2015. Pathogenic mutations differentially affect the catalytic activities of the human B12-processing chaperone CblC and increase futile redox cycling. J. Biol. Chem. 290, 11393–11402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X., Yang Y., Li X., Li C., Wang C. 2019. Distinct clinical, neuroimaging and genetic profiles of late-onset cobalamin C defects (cb1C): A report of 16 Chinese cases. Orphanet. J. Rare Dis. 14, 109.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sloan J.L., Carrillo N., Adams D., Venditti C.P. 1993. Disorders of intracellular cobalamin metabolism. In GeneReviews®. Adam M.P., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J., Gripp K.W., Amemiya A., Eds. Seattle (WA): University of Washington, Seattle.

    Google Scholar 

  52. Li Z., Shanmuganathan A., Ruetz M., Yamada K., Lesniak N.A., Kräutler B., Brunold T.C., Koutmos M., Banerjee R. 2017. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC. J. Biol. Chem. 292, 9733–9744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Birch C.S., Brasch N.E., McCaddon A., Williams J.H.H. 2009. A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radical Biol. Med. 47, 184–188.

    Article  CAS  Google Scholar 

  54. Solov’eva M.E., Solov’ev V.V., Faskhutdinova A.A., Kudryavtsev F.F., Akatov V.S. 2007). Prooxidant and cytotoxic action of N-acetylcysteine and glutathione in combinations with vitamin B12b. Cell Tissue Biol. 1, 40–49.

    Article  Google Scholar 

  55. Solovieva M.E., Solovyev V.V., Kudryavtsev A.A., Trizna Y.A., Akatov V.S. 2008. Vitamin B12b enhances the cytotoxicity of dithiothreitol. Free Radical Biol. Med. 44, 1846–1856.

    Article  CAS  Google Scholar 

  56. Solovieva M.E., Shatalin Yu.V., Solovyev V.V., Sazonov A.V., Kutyshenko V.P., Akatov V.S. 2019. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol. 20, 28–37.

    Article  CAS  PubMed  Google Scholar 

  57. Solovieva M., Shatalin Y., Fadeev R., Krestinina O., Baburina Y., Kruglov A., Kharechkina E., Kobyakova M., Rogachevsky V., Shishkova E., Akatov A.V. 2020. Vitamin B12b enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human larynx carcinoma cells. Biomolecules. 10, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., Akatov V. 2022. Disulfiram oxy-derivatives suppress protein retrotranslocation across the ER membrane to the cytosol and initiate paraptosis-like cell death. Membranes. 12, 845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Banerjee R., Gouda H., Pillay S. 2021. Redox-linked coordination chemistry directs vitamin B 12 trafficking. Acc. Chem. Res. 54, 2003–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dereven’kov I.A., Salnikov D.S., Silaghi-Dumitrescu R., Makarov S.V., Koifman O.I. 2016. Redox chemistry of cobalamin and its derivatives. Coord. Chem. Rev. 309, 68–83.

    Article  Google Scholar 

  61. Dereven’kov I.A., Hannibal L., Dürr M., Salnikov D.S., Bui Thi T.T., Makarov S.V., Koifman O.I., Ivanović-Burmazović I. 2017. Redox turnover of organometallic B12 cofactors recycles vitamin C: Sulfur assisted reduction of dehydroascorbic acid by Cob(II)alamin. J. Organomet. Chem. 839, 53–59.

    Article  Google Scholar 

  62. Li Z., Mascarenhas R., Twahir U.T., Kallon A., Deb A., Yaw M., Penner-Hahn J., Koutmos M., Warncke K., Banerjee R. 2020. An interprotein Co–S coordination complex in the B12-trafficking pathway. J. Am. Chem. Soc. 142, 16334–16345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jacobsen D.W., Troxell L.S., Brown K.L. 1984. Catalysis of thiol oxidation by cobalamins and cobinamides: Reaction products and kinetics. Biochemistry. 23, 2017–2025.

    Article  CAS  Google Scholar 

  64. Jacobsen D.W., Pezacka E.H., Brown K.L. 1993. The inhibition of corrinoid-catalyzed oxidation of mercaptoethanol by methyl iodide: Mechanistic implications. J. Inorg. Biochem. 50, 47–63.

    Article  CAS  PubMed  Google Scholar 

  65. Nazhat N.B., Golding B.T., Johnson G.R.A., Jones P. 1989. Destruction of vitamin B12 by reaction with ascorbate: The role of hydrogen peroxide and the oxidation state of cobalt. J. Inorg. Biochem. 36, 75–81.

    Article  CAS  Google Scholar 

  66. Suarez-Moreira E., Yun J., Birch C.S., Williams J.H.H., McCaddon A., Brasch N.E. 2009. Vitamin B12 and redox homeostasis: Cob(II)alamin reacts with superoxide at rates approaching superoxide dismutase (SOD). J. Am. Chem. Soc. 131, 15078–15079.

    Article  CAS  PubMed  Google Scholar 

  67. Dereven’kov I.A., Salnikov D.S., Makarov S.V., Boss G.R., Koifman O.I. 2013. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite. Dalton Trans. 42, 15307‒15316.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Quintiliani M., Badiello R., Tamba M., Esfandi A., Gorin G. 1977. Radiolysis of glutathione in oxygen-containing solutions of pH 7. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 32, 195–202.

    Article  CAS  PubMed  Google Scholar 

  69. Wefers H., Sies H. 1983. Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen. Eur. J. Biochem. 137, 29–36.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang X., Zhang N., Schuchmann H.-P., Von Sonntag C. 1994. Pulse radiolysis of 2-mercaptoethanol in oxygenated aqueous solution. Generation and reactions of the thiylperoxyl radical. J. Phys. Chem. 98, 6541–6547.

    Article  CAS  Google Scholar 

  71. Winterbourn C.C., Metodiewa D. 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biol. Med. 27, 322–328.

    Article  CAS  Google Scholar 

  72. Nagy P., Ashby M.T. 2007. Reactive sulfur species: Kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am. Chem. Soc. 129, 14082–14091.

    Article  CAS  PubMed  Google Scholar 

  73. Chandler J.D., Nichols D.P., Nick J.A., Hondal R.J., Day B.J. 2013. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J. Biol. Chem. 288, 18421–18428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hugo M., Turell L., Manta B., Botti H., Monteiro G., Netto L.E.S., Alvarez B., Radi R., Trujillo M. 2009. Thiol and sulfenic acid oxidation of ahpe, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: Kinetics, acidity constants, and conformational dynamics. Biochemistry. 48, 9416–9426.

    Article  CAS  PubMed  Google Scholar 

  75. Forni L.G., Mönig J., Mora-Arellano V.O., Willson R.L. 1983. Thiyl free radicals: Direct observations of electron transfer reactions with phenothiazines and ascorbate. J. Chem. Soc. Perkin. Trans. 2, 961–965.

    Article  Google Scholar 

  76. Nagy P., Ashby M.T. 2007. Reactive sulfur species: Kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester. Chem. Res. Toxicol. 20, 1364–1372.

    Article  CAS  PubMed  Google Scholar 

  77. Mezyk S.P. 1996. Rate constant determination for the reaction of hydroxyl and glutathione thiyl radicals with glutathione in aqueous solution. J. Phys. Chem. 100, 8861–8866.

    Article  CAS  Google Scholar 

  78. Zhao R., Lind J., Merenyi G., Eriksen T.E. 1994. Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from alpha-amino C−H bonds. J. Am. Chem. Soc. 116, 12010–12015.

    Article  CAS  Google Scholar 

  79. Kožich V., Schwahn B.C., Sokolová J., Křížková M., Ditroi T., Krijt J., Khalil Y., Křížek T., Vaculíková-Fantlová T., Stibůrková B., Mills P., Clayton P., Barvíková K., Blessing H., Sykut-Cegielska J., Dionisi-Vici C., Gasperini S., García-Cazorla Á., Haack T.B., Honzík T., Ješina P., Kuster A., Laugwitz L., Martinelli D., Porta F., Santer R., Schwarz G., Nagy P. 2022. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis. Redox Biol. 58, 102517.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Amorati R., Lynett P.T., Valgimigli L., Pratt D.A. 2012. The reaction of sulfenic acids with peroxyl radicals: Insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates. Chemistry. 18, 6370–6379.

    Article  CAS  PubMed  Google Scholar 

  81. Tamba M., Dajka K., Ferreri C., Asmus K.-D., Chatgilialoglu C. 2007. One-electron reduction of methanesulfonyl chloride. The fate of MeSO2Cl•− and Me-SO2 intermediates in oxygenated solutions and their role in the cis−trans-isomerization of mono-unsaturated fatty acids. J. Am. Chem. Soc. 129, 8716–8723.

    Article  CAS  PubMed  Google Scholar 

  82. Schöneich C. 2012. Radical-based damage of sulfur-containing amino acid residues. In Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C., Studer A., Eds. Chichester, UK: Wiley, p. rad044.

    Google Scholar 

  83. Dereven’kov I.A., Tsaba L.V., Pokrovskaya E.A., Makarov S.V. 2018. Studies on the interaction of aquacobalamin with cysteinesulfinic and cysteic acids, hypotaurine and taurine. J. Coord. Chem. 71, 3194–3206.

    Article  Google Scholar 

  84. Gupta V., Carroll K.S. 2014. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta. 1840, 847–875.

    Article  CAS  PubMed  Google Scholar 

  85. Turell L., Steglich M., Torres M.J., Deambrosi M., Antmann L., Furdui C.M., Schopfer F.J., Alvarez B. 2021. Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Free Radical Biol. Med. 165, 254–264.

    Article  CAS  Google Scholar 

  86. Paulsen C.E., Carroll K.S. 2010. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paulsen C.E., Carroll K.S. 2013. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lorenzen I., Eble J.A., Hanschmann E.-M. 2021. Thiol switches in membrane proteins—Extracellular redox regulation in cell biology. Biol. Chem. 402, 253–269.

    Article  CAS  PubMed  Google Scholar 

  89. Ovalle F., Grimes T., Xu G., Patel A.J., Grayson T.B., Thielen L.A., Li P., Shalev A. 2018. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michalek R.D., Nelson K.J., Holbrook B.C., Yi J.S., Stridiron D., Daniel L.W., Fetrow J.S., King S.B., Poole L.B., Grayson J.M. 2007. The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J. Immunol. 179, 6456–6467.

    Article  CAS  PubMed  Google Scholar 

  91. Pantano C., Reynaert N.L., Vliet A.V.D., Janssen–Heininger Y.M.W. 2006. Redox-sensitive kinases of the nuclear factor-κB signaling pathway. Antioxid. Redox Signal. 8, 1791–806.

    Article  CAS  PubMed  Google Scholar 

  92. Paulsen C.E., Carroll K.S. 2009. Chemical dissection of an essential redox switch in yeast. Chem. Biol. 16, 217–225.

    Article  CAS  PubMed  Google Scholar 

  93. Duan J., Zhang T., Gaffrey M.J., Weitz K.K., Moore R.J., Li X., Xian M., Thrall B.D., Qian W.-J. 2020. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol. 36, 101649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang T., Gaffrey M.J., Li X., Qian W.-J. 2021. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am. J. Physiol.: Cell Physiol. 320, C182–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation (No. 075-01025-23-01 for 2023)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shatalin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work was carried out without involving human participants and animals as objects of study.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatalin, Y.V., Shubina, V.S., Solovieva, M.E. et al. The Redox-Catalytic Properties of Cobalamins. Mol Biol 57, 1038–1051 (2023). https://doi.org/10.1134/S0026893323060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060158

Keywords:

Navigation