Skip to main content
Log in

Metabolic Stress of Red Blood Cells Induces Hemoglobin Glutathionylation

  • REDOX REGULATION OF METABOLIC PROCESSES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Franco R.S. 2012. Measurement of red cell lifespan and aging. Transfus. Med. Hemother. 39, 302–307. https://doi.org/10.1159/000342232

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moura P.L., Hawley B.R., Mankelow T.J., Griffiths R.E., Dobbe J.G.G., Streekstra G.J., Anstee D.J., Satchwell T.J., Toye A.M. 2018. Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica. 103, 1997–2007. https://doi.org/10.3324/haematol.2018.199083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ovchynnikova E., Aglialoro F., Von Lindern M., Van Den Akker E. 2018. The shape shifting story of reticulocyte maturation. Front. Physiol. 9, 829. https://doi.org/10.3389/fphys.2018.00829

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohanty J.G., Nagababu E., Rifkind J.M. 2014. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 5, 84. https://doi.org/10.3389/fphys.2014.00084

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tang H., Ho H., Wu P., Chen S., Kuypers F.A., Cheng M., Chiu D.T. 2015. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid. Redox Signal. 22, 744–759. https://doi.org/10.1089/ars.2014.6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mamillapalli C., Tentu R., Jain N.K., Bhandari R. 2019. COPD and type 2 diabetes. Curr. Respir. Med. Rev. 15, 112–119. https://doi.org/10.2174/1573398X15666190211155640

    Article  CAS  Google Scholar 

  7. Vasileiadis I., Alevrakis E., Ampelioti S., Vagionas D., Rovina N., Koutsoukou A. 2019. Acid-base disturbances in patients with asthma: A literature review and comments on their pathophysiology. J. Clin. Med. 8, 563, https://doi.org/10.3390/jcm8040563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sircar M., Bhatia A., Munshi M. 2016. Review of hypoglycemia in the older adult: Clinical implications and management. Can. J. Diabetes. 40, 66–72. https://doi.org/10.1016/j.jcjd.2015.10.004

    Article  PubMed  Google Scholar 

  9. UK Hypoglycaemia study group 2007. Risk of hypoglycaemia in types 1 and 2 diabetes: Effects of treatment modalities and their duration. Diabetologia. 50, 1140–1147. https://doi.org/10.1007/s00125-007-0599-y

    Article  CAS  Google Scholar 

  10. van Wijk R., van Solinge W.W. 2005. The energy-less red blood cell is lost: Erythrocyte enzyme abnormalities of glycolysis. Blood. 106, 4034–4042. https://doi.org/10.1182/blood-2005-04-1622

    Article  CAS  PubMed  Google Scholar 

  11. Pandey K.B., Rizvi S.I. 2011. Biomarkers of oxidative stress in red blood cells. Biomed. Pap. 155, 131–136. https://doi.org/10.5507/bp.2011.027

    Article  CAS  Google Scholar 

  12. Miwa S. 1983. Hereditary disorders of red cell enzymes in the Embden–Meyerhof pathway. Am. J. Hematol. 14, 381–391. https://doi.org/10.1002/ajh.2830140410

    Article  CAS  PubMed  Google Scholar 

  13. Koralkova P., van Solinge W.W., van Wijk R. 2014. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia—pathophysiology, clinical aspects, and laboratory diagnosis. Int. J. Lab. Hematol. 36, 388–397. https://doi.org/10.1111/ijlh.12223

    Article  CAS  PubMed  Google Scholar 

  14. Lang F., Abed M., Lang E., Föller M. 2014. Oxidative stress and suicidal erythrocyte death. Antioxid. Redox Signal. 21, 138–153. https://doi.org/10.1089/ars.2013.5747

    Article  CAS  PubMed  Google Scholar 

  15. Gilbert H.F. 2006. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol. 63, 69–172.

    Google Scholar 

  16. Poluektov Y.M., Petrushanko I.Yu., Undrovinas N.A., Lakunina V.A., Khapchaev A.Y., Kapelko V.I., Abra-mov A.A., Lakomkin V.L., Novikov M.S., Shirinsky V.P. 2019. Glutathione-related substances maintain cardiomyocyte contractile function in hypoxic conditions. Sci. Rep. 9, 4872. https://doi.org/10.1038/s41598-019-41266-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D. 2008. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988. https://doi.org/10.1089/ars.2008.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrushanko I.Yu., Yakushev S., Mitkevich V.A., Kamanina Y.V., Ziganshin R.H., Meng X., Anash-kina A.A., Makhro A., Lopina O.D., Gassmann M. 2012. S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 287, 32195–32205. https://doi.org/10.1074/jbc.M112.391094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giustarini D., Dalle-Donne I., Milzani A., Braconi D., Santucci A., Rossi R. 2019. Membrane skeletal protein S-glutathionylation in human red blood cells as index of oxidative stress. Chem. Res. Toxicol. 32, 1096–1102. https://doi.org/10.1021/acs.chemrestox.8b00408

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann C., Neumann E., Blossfeld J., Frese S., Orthmann P., Montiel G., Bloch W., Brixius K. 2011. Influence of glycemic status and physical fitness on oxidative stress and the peroxiredoxin system in the erythrocytes of non-insulin-dependent type 2 diabetic men. Exp. Clin. Endocrinol. Diabetes. 119, 559–564. https://doi.org/10.1055/s-0031-1279712

    Article  CAS  PubMed  Google Scholar 

  21. Yousefzade G., Nakhaee A. 2012. Insulin-induced hypoglycemia and stress oxidative state in healthy people. Acta Diabetol. 49, 81–85. https://doi.org/10.1007/s00592-011-0311-z

    Article  CAS  Google Scholar 

  22. Pompeo G., Girasole M., Cricenti A., Boumis G., Bellelli A., Amiconi S. 2010. Erythrocyte death in vitro induced by starvation in the absence of Ca2+. Biochim. Biophys. Acta. 1798, 1047–1055. https://doi.org/10.1016/j.bbamem.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  23. Nemkov T., Qadri S.M., Sheffield W.P., D’Alessandro A. 2020. Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. Blood Transfus. 130, 130‒142. https://doi.org/10.2450/2020.0256-19

    Article  Google Scholar 

  24. Van Cromvoirt A.M., Fenk S., Sadafi A., Melni-kova E.V., Lagutkin D.A., Dey K., Petrushanko I.Yu., Hegemann I., Goede J.S., Bogdanova A. 2021. Donor age and red cell age contribute to the variance in lorrca indices in healthy donors for next generation ektacytometry: A pilot study. Front. Physiol. 12, 639722. https://doi.org/10.3389/fphys.2021.639722

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petrushanko I., Bogdanov N., Bulygina E., Grenacher B., Leinsoo T., Boldyrev A., Gassmann M., Bogdanova A. 2006. Na-K-ATPase in rat cerebellar granule cells is redox sensitive. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, 916–925. https://doi.org/10.1152/ajpregu.00038.2005

    Article  CAS  Google Scholar 

  26. Petrushanko I.Yu., Bogdanov N.B., Lapina N., Boldyrev A.A., Gassmann M., Bogdanova A.Yu. 2007. Oxygen-induced regulation of Na/K ATPase in cerebellar granule cells. J. Gen. Physiol. 130, 389–398. https://doi.org/10.1085/jgp.200709783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitkevich V.A., Kretova O.V., Petrushanko I.Yu., Burnysheva K.M., Sosin D.V., Simonenko O.V., Ilinskaya O.N., Tchurikov N.A., Makarov A.A. 2013. Ribonuclease binase apoptotic signature in leukemic kasumi-1 cells. Biochimie. 95, 1344–1349. https://doi.org/10.1016/j.biochi.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto A., Saito N., Yamauchi Y., Takeda M., Ueki S., Itoga M., Kojima K., Kayaba H. 2014. Flow cytometric analysis of red blood cell osmotic fragility. SLAS Technol. 19, 483–487. https://doi.org/10.1177/2211068214532254

    Article  Google Scholar 

  29. Slatinskaya O.V., Zaripov P.I., Brazhe N.A., Petrushanko I.Yu., Maksimov G.V. 2022. Changes in the conformation and distribution of hemoglobin in the erythrocyte upon inhibition of Na+/K+-ATPase activity. Biophysics. 67, 726–733. https://doi.org/10.1134/S0006350922050189

    Article  CAS  Google Scholar 

  30. Makhro A., Huisjes R., Verhagen L.P., Mañú-Pereira M. del M., Llaudet-Planas E., Petkova-Kirova P., Wang J., Eichler H., Bogdanova A., van Wijk R. 2016. Red cell properties after different modes of blood transportation. Front. Physiol. 7, 288. https://doi.org/10.3389/fphys.2016.00288

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fedorov D.A., Sidorenko S.V., Yusipovich A.I., Parshina E.Y., Tverskoi A.M., Abramicheva P.A., Maksi-mov G.V., Orlov S.N., Lopina O.D., Klimanova E.A. 2021. Na\(_{i}^{ + }\)/K\(_{i}^{ + }\) imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl. Heliyon. 7, e08088. https://doi.org/10.1016/j.heliyon.2021.e0808810.1016/j.heliyon.2021.e08088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang R., Xiang Y., Ran Q., Deng X., Xiao Y., Xiang L., Li Z. 2014. Involvement of calcium, reactive oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell. Physiol. Biochem. 34, 1780–1791. https://doi.org/10.1159/000366378

    Article  CAS  PubMed  Google Scholar 

  33. Suh S., Kim J.H. 2015. Glycemic variability: How do we measure it and why is it important? Diabetes Metab. J. 39, 273‒282. https://doi.org/10.4093/dmj.2015.39.4.273

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cryer P.E., Axelrod L., Grossman A.B., Heller S.R., Montori V.M., Seaquist E.R., Service F.J. 2009. Evaluation and management of adult hypoglycemic disorders: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 94, 709–728. https://doi.org/10.1210/jc.2008-1410

    Article  CAS  PubMed  Google Scholar 

  35. Szadkowska A., Czyżewska K., Pietrzak I., Mianowska B., Jarosz-Chobot P., Myśliwiec M. 2018. Hypoglycaemia unawareness in patients with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 24, 126–134. https://doi.org/10.5114/pedm.2018.80994

    Article  Google Scholar 

  36. Silbert R., Salcido-Montenegro A., Rodriguez-Gutierrez R., Katabi A., McCoy R.G. 2018. Hypoglycemia among patients with type 2 diabetes: Epidemiology, risk factors, and prevention strategies. Curr. Diab. Rep. 18, 53. https://doi.org/10.1007/s11892-018-1018-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vega-Cano S., Cordero-Vázquez E., Mestre-Torres J. 2021. Hipoglucemia como forma de presentación de infiltración hipofisaria por un linfoma. Med. Clínica. 156, 362–363. https://doi.org/10.1016/j.medcli.2020.01.040

    Article  Google Scholar 

  38. Wang J., Zhu C.-K., Yu J.-Q., Tan R., Yang P.-L. 2021. Hypoglycemia and mortality in sepsis patients: A systematic review and meta-analysis. Heart Lung. 50, 933–940. https://doi.org/10.1016/j.hrtlng.2021.07.017

    Article  PubMed  Google Scholar 

  39. Salehi M., Vella A., McLaughlin T., Patti M.-E. 2018. Hypoglycemia after gastric bypass surgery: Current concepts and controversies. J. Clin. Endocrinol. Metab. 103, 2815–2826. https://doi.org/10.1210/jc.2018-00528

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amiel S.A. 2021. The consequences of hypoglycaemia. Diabetologia. 64, 963–970. https://doi.org/10.1007/s00125-020-05366-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. 2020. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020, 7489795. https://doi.org/10.1155/2020/7489795

  42. Rogers T.B., Lokuta A.J. 1994. Angiotensin II signal transduction pathways in the cardiovascular system. Trends Cardiovasc. Med. 4, 110–116. https://doi.org/10.1016/1050-1738(94)90062-0

    Article  CAS  PubMed  Google Scholar 

  43. Kosower N.S., Zipser Y., Faltin Z. 1982. Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. relationship to cellular glutathione. Biochim. Biophys. Acta. 691, 345–352. https://doi.org/10.1016/0005-2736(82)90424-2

    Article  CAS  PubMed  Google Scholar 

  44. Craescu C.T., Poyart C., Schaefferll C., Garel M.-C., Kisterp J., Beuzard Y. 1986. Covalent binding of glutathione to hemoglobin. II. Functional consequences and structural changes reflected in NMR spectra. J. B-iol. Chem. 261, 14710–14716.

    Article  CAS  Google Scholar 

  45. Metere A., Iorio E., Scorza G., Camerini S., Casella M., Crescenzi M., Minetti M., Pietraforte D. 2014. Carbon monoxide signaling in human red blood cells: Evidence for pentose phosphate pathway activation and protein deglutathionylation. Antioxid. Redox Signal. 20, 403–416. https://doi.org/10.1089/ars.2012.5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colombo G., Dalle-Donne I., Giustarini D., Gagliano N., Portinaro N., Colombo R., Rossi R., Milzani A. 2010. Cellular redox potential and hemoglobin S-glutathionylation in human and rat erythrocytes: A comparative study. Blood Cells. Mol. Dis. 44, 133–139. https://doi.org/10.1016/j.bcmd.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  47. Perutz M.F. 1970. Stereochemistry of cooperative effects in haemoglobin: Haem–haem interaction and the problem of allostery. Nature. 228, 726–734. https://doi.org/https://doi.org/10.1038/228726a0

    Article  CAS  PubMed  Google Scholar 

  48. Rubino F.M. 2021. The redox potential of the β-93-cysteine thiol group in human hemoglobin estimated from in vitro oxidant challenge experiments. Molecules. 26, 2528. https://doi.org/10.3390/molecules26092528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fenk S., Melnikova E.V., Anashkina A.A., Po-luektov Y.M., Zaripov P.I., Mitkevich V.A., Tkachev Y.V., Kaestner L., Minetti G., Mairbäurl H. 2022. Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biol. 58, 102535. https://doi.org/10.1016/j.redox.2022.102535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen H.-J.C., Lin W.-P., Chiu S.-D., Fan C.-H. 2014. Multistage mass spectrometric analysis of human hemoglobin glutathionylation: Correlation with cigarette smoking. Chem. Res. Toxicol. 27, 864–872. https://doi.org/10.1021/tx5000359

    Article  CAS  PubMed  Google Scholar 

  51. Collins J.-A., Rudenski A., Gibson J., Howard L., O’Driscoll R. 2015. Relating oxygen partial pressure, saturation and content: The haemoglobin–oxygen dissociation curve. Breathe (Sheff). 11, 194–201. https://doi.org/10.1183/20734735.001415

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghezzi P. 2013. Protein glutathionylation in health and disease. Biochim. Biophys. Acta. 1830, 3165–3172. https://doi.org/10.1016/j.bbagen.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  53. Radosinska J., Vrbjar N. 2021. Erythrocyte deformability and Na,K-ATPase activity in various pathophysiological situations and their protection by selected nutritional antioxidants in humans. Int. J. Mol. Sci. 22, 11924. https://doi.org/10.3390/ijms222111924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation grant no. 19-14-00374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Petrushanko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in this work comply with the ethical standards of the institutional research ethics committee and the 1964 Declaration of Helsinki and its subsequent amendments or comparable ethical standards. Informed consent was obtained from all patients for medical examination, including blood sampling.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, P.I., Kuleshova, Y.D., Poluektov, Y.M. et al. Metabolic Stress of Red Blood Cells Induces Hemoglobin Glutathionylation. Mol Biol 57, 1176–1185 (2023). https://doi.org/10.1134/S0026893323060225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060225

Keywords:

Navigation