Skip to main content
Log in

Interaction of SENP6 with PINK1 Promotes Temozolomide Resistance in Neuroglioma Cells via Inducing the Mitophagy

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Temozolomide resistance is a major cause of recurrence and poor prognosis in neuroglioma. Recently, growing evidence has suggested that mitophagy is involved in drug resistance in various tumor types. However, the role and molecular mechanisms of mitophagy in temozolomide resistance in glioma remain unclear. In this study, mitophagy levels in temozolomide-resistant and -sensitive cell lines were evaluated. The mechanisms underlying the regulation of mitophagy were explored through RNA sequencing, and the roles of differentially expressed genes in mitophagy and temozolomide resistance were investigated. We found that mitophagy promotes temozolomide resistance in glioma. Specifically, small ubiquitin-like modifier specific protease 6 (SENP6) promoted temozolomide resistance in glioma by inducing mitophagy. Protein-protein interactions between SENP6 and the mitophagy executive protein PTEN-induced kinase 1 (PINK1) resulted in a reduction in small ubiquitin-like modifier 2 (SUMO2)ylation of PINK1, thereby enhancing mitophagy. Our study demonstrates that by inducing mitophagy, the interaction of SENP6 with PINK1 promotes temozolomide resistance in glioblastoma. Therefore, targeting SENP6 or directly regulating mitophagy could be a potential and novel therapeutic target for reversing temozolomide resistance in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lopes M.B.S. 2017. The 2017 World Health Organization classification of tumors of the pituitary gland: A summary. Acta Neuropathol. 134, 521‒535.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987‒996.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas A., Tanaka M., Trepel J., Reinhold W.C., Rajapakse V.N., Pommier Y. 2017. Temozolomide in the era of precision medicine. Cancer Res. 77, 823‒826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J., Stevens M.F., Bradshaw T.D. 2012. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 5, 102‒114.

    Article  CAS  PubMed  Google Scholar 

  5. Han B., Meng X., Wu P., Li Z., Li S., Zhang Y., Zha C., Ye Q., Jiang C., Cai J., Jiang T. 2020. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 10, 3351‒3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu C., Wei Y., Wang X., Zhang Z., Yin J., Li W., Chen L., Lyu X., Shi Z., Yan W., You Y. 2020. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol. Cancer. 19, 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meng X., Zhao Y., Han B., Zha C., Zhang Y., Li Z., Wu P., Qi T., Jiang C., Liu Y., Cai J. 2020. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat. Commun. 11, 594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomar M., Kumar A., Srivastava C., Shrivastava A. 2021. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta, Rev. Cancer. 1876 (2), 188616.

  9. Lin Z., Niu Y., Wan A., Chen D., Liang H., Chen X., Sun L., Zhan S., Chen L., Cheng C., Zhang X., Bu X., He W., Wan G.2 021. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 39, e103181.

  10. Shen W., Zhang W., Ye W., Wang H., Zhang Q., Shen J., Hong Q., Li X., Wen G., Wei T., Zhang J. 2020. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics. 10, 4466‒4480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parzych K.R., Klionsky D.J. 2014. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460‒473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim K.H., Lee M.S. 2014. Autophagy—a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322−337.

    Article  CAS  PubMed  Google Scholar 

  13. Onorati A.V., Dyczynski M., Ojha R., Amaravadi R.K. 2018. Targeting autophagy in cancer. Cancer. 124, 3307‒3318.

    Article  PubMed  Google Scholar 

  14. D’Arcy M.S. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell. Biol. Int. 43, 582‒592.

    Article  PubMed  Google Scholar 

  15. Scrivo A., Bourdenx M., Pampliega O., Cuervo A.M. 2018. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17, 802‒815.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li W., He P., Huang Y., Li Y.F., Lu J., Li M., Kurihara H., Luo Z., Meng T., Onishi M., Ma C., Jiang L., Hu Y., Gong Q., Zhu D., Xu Y., Liu R., Liu L., Yi C., Zhu Y., Ma N., Okamoto K., Xie Z., Liu J., He R.R., Feng D. 2021. Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11, 222‒256.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bernardini J.P., Lazarou M., Dewson G. 2017. Parkin and mitophagy in cancer. Oncogene. 36, 1315‒1327.

    Article  CAS  PubMed  Google Scholar 

  18. Xie Y., Liu J., Kang R., Tang D. 2020. Mitophagy receptors in tumor biology. Front. Cell Dev. Biol. 8, 594203.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chuang K.C., Chang C.R., Chang S.H., Huang S.W., Chuang S.M., Li Z.Y., Wang S.T., Kao J.K., Chen Y.J., Shieh J.J. 2020. Imiquimod-induced ROS production disrupts the balance of mitochondrial dynamics and increases mitophagy in skin cancer cells. J. Dermatol. Sci. 98, 152‒162.

    Article  CAS  PubMed  Google Scholar 

  20. Ashrafi G., Schwarz T.L. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31‒42.

    Article  CAS  PubMed  Google Scholar 

  21. Eiyama A., Okamoto K. 2015. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell. Biol. 33, 95‒101.

    Article  CAS  PubMed  Google Scholar 

  22. Heo J.M., Ordureau A., Paulo J.A., Rinehart J., Harper J.W. 2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell. 60, 7‒20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bravo-San Pedro J.M., Kroemer G., Galluzzi L. 2017. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 120, 1812‒1824.

    Article  CAS  PubMed  Google Scholar 

  24. Clark E.H., Vázquez de la Torre A., Hoshikawa T., Briston T. 2021. Targeting mitophagy in Parkinson’s disease. J. Biol. Chem. 296, 100209.

    Article  CAS  PubMed  Google Scholar 

  25. Wei R., Cao J., Yao S. 2018. Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones. 23, 1295‒1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu B., Zhou J., Wang C., Chi Y., Wei Q., Fu Z., Lian C., Huang Q., Liao C., Yang Z., Zeng H., Xu N., Guo H. 2020. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis. 11, 384.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Q., Zeng F., Sun Y., Qiu Q., Zhang J., Huang W., Huang J., Huang X., Guo L. 2018. Etk interaction with PFKFB4 modulates chemoresistance of small-cell lung cancer by regulating autophagy. Clin. Cancer Res. 24, 950‒962.

    Article  CAS  PubMed  Google Scholar 

  28. Zeng F., Wang Q., Wang S., Liang S., Huang W., Guo Y., Peng J., Li M., Zhu W., Guo L. 2020. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression. Oncogene. 39, 293‒307.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L., Wang L., Hu X.B., Hou M., Xiao Y., Xiang J.W., Xie J., Chen Z.G., Yang T.H., Nie Q., Fu J.L., Wang Y., Zheng S.Y., Liu Y.F., Gan Y.W., Gao Q., Bai Y.Y., Wang J.M., Qi R.L., Zou M., Ke Q., Zhu X.F., Gong L., Liu Y., Li D.W. 2022. MYPT1/PP1-mediated EZH2 dephosphorylation at S21 promotes epithelial-mesenchymal transition in fibrosis through control of multiple families of genes. Adv. Sci. 9, e2105539.

    Article  Google Scholar 

  30. Shen W., Zhang X., Fu X., Fan J., Luan J., Cao Z., Yang P., Xu Z., Ju D. 2017. A novel and promising therapeutic approach for NSCLC: Recombinant human arginase alone or combined with autophagy inhibitor. Cell Death Dis. 8, e2720.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Iwashita H., Torii S., Nagahora N., Ishiyama M., Shioji K., Sasamoto K., Shimizu S., Okuma K. 2017. Live cell imaging of mitochondrial autophagy with a novel fluorescent small molecule. ACS Chem. Biol. 12, 2546‒2551.

    Article  CAS  PubMed  Google Scholar 

  32. Shihan M.H., Novo S.G., Marchand S.J., Wang Y., Duncan M.K. 2021. A simple method for quantitating confocal fluorescent images. Biochem. Biophys. Rep. 25, 100916.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jensen E.C. 2013. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat. Rec. 296 (3), 378‒381.

    Article  Google Scholar 

  34. Moore A.S., Holzbaur E.L.F. 2019. Imaging the dynamics of mitophagy in live cells. Methods Mol. Biol. 1880, 601‒610.

    Article  CAS  PubMed  Google Scholar 

  35. Montgomery M.K., Kim S.H., Dovas A., Zhao H.T., Goldberg A.R., Xu W., Yagielski A.J., Cambareri M.K., Patel K.B., Mela A., Humala N., Thibodeaux D.N., Shaik M.A., Ma Y., Grinband J., Chow D.S., Schevon C., Canoll P., Hillman E.M.C. 2020. Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression. Cell Rep. 31 (2), 107500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venkataramani V., Tanev D.I., Strahle C., Studier-Fischer A., Fankhauser L., Kessler T., Körber C., Kardorff M., Ratliff M., Xie R., Horstmann H., Messer M., Paik S.P., Knabbe J., Sahm F., Kurz F.T., Acikgöz A.A., Herrmannsdörfer F., Agarwal A., Bergles D.E., Chalmers A., Miletic H., Turcan S., Mawrin C., Hänggi D., Liu H.K., Wick W., Winkler F., Kuner T. 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 573 (7775), 532‒538.

    Article  CAS  PubMed  Google Scholar 

  37. Venkatesh H.S., Morishita W., Geraghty A.C. 2019. Electrical and synaptic integration of glioma into neural circuits. Nature. 573 (7775), 539‒545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin J. 2019. Interplay between ubiquitylation and SUM-Oylation: Empowered by phase separation. J. Biol. Chem. 294, 15235‒15236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu C., Zhao H., Xiao S., Han T., Chen Y., Wang T., Ma Y., Gao H., Xie Z., Du L.L., Li J., Li G., Li W. 2020. Slx5p-Slx8p promotes accurate chromosome segregation by mediating the degradation of synaptonemal complex components during meiosis. Adv. Sci. 7, 1900739.

    Article  CAS  Google Scholar 

  40. Lazarou M., Sliter D.A., Kane L.A., Sarraf S.A., Wang C., Burman J.L., Sideris D.P., Fogel A.I., Youle R.J. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 524, 309‒314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geisler S., Holmström K.M., Skujat D., Fiesel F.C., Rothfuss O.C., Kahle P.J., Springer W. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119‒131.

    Article  CAS  PubMed  Google Scholar 

  42. Chang H.M., Yeh E.T.H. 2020. SUMO: From bench to bedside. Physiol. Rev. 100, 1599‒1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu C.Y., Yeh L.T., Fu S.H., Chien M.W., Liu Y.W., Miaw S.C., Chang D.M., Sytwu H.K. 2018. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J. Clin. Invest. 128, 3779‒3793.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seeler J.S., Dejean A. 2017. 1SUMO and the robustness of cancer. Nat. Rev. Cancer. 17, 184‒197.

    Article  CAS  PubMed  Google Scholar 

  45. Qiu J., Sheedlo M.J., Yu K., Tan Y., Nakayasu E.S., Das C., Liu X., Luo Z.Q. 2016. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 533, 120‒124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu H., Liu N., Dong Q., Ma C., Yang J., Xiong J., Zhang Z., Qi X., Huang C., Zhu B. 2019. SENP6-mediated M18BP1 deSUMOylation regulates CENP-A centromeric localization. Cell Res. 29, 254‒257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qian J., Luo Y., Gu X., Wang X. 2013. Inhibition of SENP6-induced radiosensitization of human hepatocellular carcinoma cells by blocking radiation-induced NF-κB activation. Cancer Biother. Radiopharm. 28, 196‒200.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Project of Hainan Health and Family Planning Industry (no. 18A200175), the Key Research and Development Projects of Sichuan Science and Technology (2022YFS0221, 2022YFS0074, 2022YFS0156 and 2022YFS0378), and the Sichuan Provincial People’s Hospital Hospital Young Talent Fund (2021QN08).

Author information

Authors and Affiliations

Authors

Contributions

Youyu Wang, Qi Cao and Cong Chen designed the study. Yawei Wang, Kegang Jia, Huaijie Xing, Yun Pan and Weitao Shen carried out the experiments and acquired the data. Yawei Wang, Kegang Jia, Chaosheng Zeng, Lin Chen and Qingjie Su conducted the data analysis. Youyu Wang, Qi Cao, Jing Chen and Cong Chen drafted and revised the manuscript.

Y.W. Wang, K.G. Jia, H.J. Xing—contributed equally to this work.

Corresponding authors

Correspondence to C. Chen, Q. Cao or Y. Y. Wang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The experimental protocol was performed according to the National Institutes of Health Guide for the Care and Use of Laboratory. Animal-related experiments were conducted in accordance with the Hainan Medical College Guidelines for the care and use of laboratory animals. Animal protocols were approved by Animal Ethics Committee of the Second Affiliated Hospital of Hainan Medical College at Haikou, Hainan province (No. LW2022032, issued on Febulary 1st, 2022).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.W., Jia, K.G., Xing, H.J. et al. Interaction of SENP6 with PINK1 Promotes Temozolomide Resistance in Neuroglioma Cells via Inducing the Mitophagy. Mol Biol 57, 1228–1238 (2023). https://doi.org/10.1134/S0026893324010175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010175

Keywords:

Navigation