Skip to main content
Log in

Characteristics of δ-Aminolevulinic Acid Dehydratase of the Cold-Water Sponge Halisarca dujardinii

  • THE ROLE OF REDOX-DEPENDENT PROTEINS IN THE IMPLEMENTATION OF REDOX-REGULATION OF CELLS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

δ-Aminolevulinic acid dehydratase (ALAD) is a key enzyme of the cytoplasmic heme biosynthesis pathway. The primary structure of the ALAD gene, the multimeric structure of the ALAD/hemB protein, and ALAD expression during the annual reproductive cycle were studied in the cold-water marine sponge Halisarca dujardinii. The results implicated the GATA-1 transcription factor and DNA methylation in regulating ALAD expression. Re-aggregation of sponge cells was accompanied by a decrease in ALAD expression and a change in the cell content of an active ALAD/hemB form. Further study of heme biosynthesis and the role of ALAD/hemB in morphogenesis of basal animals may provide new opportunities for treating pathologies in higher animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jaffe E.K. 2020. Porphobilinogen synthase: An equilibrium of different assemblies in human health. Prog. Mol. Biol. Transl. Sci. 169, 85‒104. https://doi.org/10.1016/bs.pmbts.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Finoshin A.D., Adameyko K.I., Mikhailov K.V., Kravchuk O.I., Georgiev A.A., Gornostaev N.G., Kosevich I.A., Mikhailov V.S., Gazizova G.R., Shagimardanova E.I., Gusev O.A., Lyupina Y.V. 2020. Iron metabolic pathways in the processes of sponge plasticity. PLoS One. 15, e0228722. https://doi.org/10.1371/journal.pone.0228722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chiabrando D., Bertino F., Tolosano E. 2020. Hereditary ataxia: A focus on heme metabolism and Fe−S cluster biogenesis. Int. J. Mol. Sci. 21, 3760. https://doi.org/10.3390/ijms21113760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaffe E.K., Lawrence S.H. 2012. Allostery and the dynamic oligomerization of porphobilinogen synthase. Arch. Biochem. Biophys. 519, 144‒153. https://doi.org/10.1016/j.abb.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  5. Ge J., Yu Y., Xin F., Yang Z.J., Zhao H.M., Wang X., Tong Z.S., Cao X.C. 2017. Downregulation of delta-aminolevulinate dehydratase is associated with poor prognosis in patients with breast cancer. Cancer Sci. 108, 604‒611. https://doi.org/10.1111/cas.13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye Q., Yang X., Zheng S., Mao X., Shao Y., Xuan Z., Huang P. 2022. Low expression of moonlight gene ALAD is correlated with poor prognosis in hepatocellular carcinoma. Gene. 825, 146437. https://doi.org/10.1016/j.gene.2022.146437

    Article  CAS  PubMed  Google Scholar 

  7. Kaya A.H., Plewinska M., Wong D.M., Desnick R.J., Wetmur J.G. 1994. Human delta-aminolevulinate dehydratase (ALAD) gene: Structure and alternative splicing of the erythroid and housekeeping mRNAs. Genomics. 19, 242‒248. https://doi.org/10.1006/geno.1994.1054

    Article  CAS  PubMed  Google Scholar 

  8. Bishop T.R., Miller M.W., Beall J., Zon L.I., Dierks P. 1996. Genetic regulation of delta-aminolevulinate dehydratase during erythropoiesis. Nucleic Acids Res. 24, 2511‒2518. https://doi.org/10.1093/nar/24.13.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desgardin A.D., Abramova T., Rosanwo T.O., Kartha S., Shim E.H., Jane S.M., Cunningham J.M. 2012. Regulation of delta-aminolevulinic acid dehydratase by Krüppel-like factor 1. PLoS One. 7, e46482. https://doi.org/10.1371/journal.pone.0046482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li C., Xu M., Wang S., Yang X., Zhou S., Zhang J., Liu Q., Sun Y. 2011. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol. Lett. 203, 48‒53. https://doi.org/10.1016/j.toxlet.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  11. Simion P., Philippe H., Baurain D., Jager M., Richter D.J., Di Franco A., Roure B., Satoh N., Quéinnec É., Ereskovsky A., Lapébie P., Corre E., Delsuc F., King N., Wörheide G., Manuel M.A. 2017. Large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Bi-ol. 27, 958‒967. https://doi.org/10.1016/j.cub.2017.02.031

    Article  CAS  Google Scholar 

  12. Wade J, Byrne D.J., Ballentine C.J., Drakesmith H. 2021. Temporal variation of planetary iron as a driver of evolution. Proc. Natl. Acad. Sci. U. S. A. 118, e2109865118. https://doi.org/10.1073/pnas.2109865118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lavrov A.I., Kosevich I.A. 2014. Sponge cell reaggregation: Mechanisms and dynamics of the process. Russ. J. Dev. Biol. 45, 205–223. https://doi.org/10.1134/S1062360414040067

  14. Ereskovsky A., Borisenko I.E., Bolshakov F.V., Lavrov A.I. 2021. Whole-body regeneration in sponges: Diversity, fine mechanisms, and future prospects. Genes (Basel). 12, 506. https://doi.org/10.3390/genes12040506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sogabe S., Hatleberg W.L., Kocot K.M., Say T.E., Stoupin D., Roper K.E., Fernandez-Valverde S.L., Degnan S.M., Degnan B.M. 2019. Pluripotency and the origin of animal multicellularity. Nature. 570, 519–522. https://doi.org/10.1038/s41586-019-1290-4

    Article  CAS  PubMed  Google Scholar 

  16. Adameyko K.I., Burakov A.V., Finoshin A.D., Mikhailov K.V., Kravchuk O.I., Kozlova O.S., Gornostaev N.G., Cherkasov A.V., Erokhov P.A., Indeykina M.I., Bugrova A.E., Kononikhin A.S., Moiseenko A.V., Sokolova O.S., Bonchuk A.N., Zhegalova I.V., Georgiev A.A., Mikhailov V.S., Gogoleva N.E., Gazizova G.R., Shagimardanova E.I., Gusev O.A., Lyupina Y.V. 2021. Conservative and atypical ferritins of sponges. Int. J. Mol. Sci. 22, 8635. https://doi.org/10.3390/ijms22168635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ereskovsky A.V. 2000. Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. Biol. Bull. 198, 77‒87. https://doi.org/10.2307/1542805

    Article  CAS  PubMed  Google Scholar 

  18. Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., MacManes M.D., Ott M., Orvis J., Pochet N., Strozzi F., Weeks N., Westerman R., William T., Dewey C.N., Henschel R., LeDuc R.D., Friedman N., Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494‒1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  19. Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357‒359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li B., Dewey C.N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12, 323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adameyko K.I., Kravchuk O.I., Finoshin A.D., Bonchuk A.N., Georgiev A.A., Mikhailov V.S., Gornostaev N.G., Mikhailov K.V., Bacheva A.V., Indeykina M.I., Bugrova A.E., Gazizova, G.R., Kozlova O.S., Gusev O.A., Shagimardanova E.I., Lyupina Y.V. 2020. Structure of neuroglobin from cold-water sponge Halisarca dujardinii. Mol. Biol. (Moscow). 54, 416‒420. https://doi.org/10.1134/S0026893320030036

    Article  CAS  Google Scholar 

  22. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389‒3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slater G.S., Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 6, 31. https://doi.org/10.1186/1471-2105-6-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772‒780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268‒274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  26. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587‒589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518‒522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870‒1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680‒685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  30. Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G. 2003. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2337‒2342. https://doi.org/10.1002/rcm.1196

    Article  CAS  PubMed  Google Scholar 

  31. Williams S.T., Lockyer A.E., Dyal P., Nakano T., Churchill C.K.C., Speiser D.I. 2017. Colorful seashells: Identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails. Ecol. Evol. 7, 10379‒10397. https://doi.org/10.1002/ece3.3552

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akagi R., Kato N., Inoue R., Anderson K.E., Jaffe E.K., Sassa S. 2006. delta-Aminolevulinate dehydratase (ALAD) porphyria: The first case in North America with two novel ALAD mutations. Mol. Genet. Metab. 87, 329‒336. https://doi.org/10.1016/j.ymgme.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  33. Inoue R., Akagi R. 2008. Co-synthesis of human delta-aminolevulinate dehydratase (ALAD) mutants with the wild-type enzyme in cell-free system-critical importance of conformation on enzyme activity-. J. Clin. Biochem. Nutr. 43, 143‒153. https://doi.org/10.3164/jcbn.2008035

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maruno M., Furuyama K., Akagi R., Horie Y., Megu-ro K., Garbaczewski L., Chiorazzi N., Doss M.O., Hassoun A., Mercelis R., Verstraeten L., Harper P., Floderus Y., Thunell S., Sassa S. 2001. Highly heterogeneous nature of delta-aminolevulinate dehydratase (ALAD) deficiencies in ALAD porphyria. Blood. 97, 2972‒2978. https://doi.org/10.1182/blood.v97.10.2972

    Article  CAS  PubMed  Google Scholar 

  35. Neslund-Dudas C., Levin A.M., Rundle A., Beebe-Dimmer J., Bock C.H., Nock N.L., Jankowski M., Datta I., Krajenta R., Dou Q.P., Mitra B., Tang D., Rybicki B.A. 2014. Case-only gene-environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer. Prostate. 74, 637‒646. https://doi.org/10.1002/pros.22781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richard K.L., Kelley B.R., Johnson J.G. 2019. Heme uptake and utilization by Gram-negative bacterial pathogens. Front. Cell. Infect. Microbiol. 9, 81. https://doi.org/10.3389/fcimb.2019.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaffe E.K. 2016. The remarkable character of porphobilinogen synthase. Acc. Chem. Res. 49, 2509‒2517. https://doi.org/10.1021/acs.accounts.6b00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Selwood T., Tang L., Lawrence S.H., Anokhina Y., Jaffe E.K. 2008. Kinetics and thermodynamics of the interchange of the morpheein forms of human porphobilinogen synthase. Biochemistry. 47, 3245‒3257. https://doi.org/10.1021/bi702113z

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to staff of the “The Arctic Circle” tourist center (Russia) for help in material collection.

The study employed equipment of the Core Research Facility of the Koltsov Institute of Developmental Biology.

Funding

This work was supported by a state contract with the Koltsov Institute of Developmental Biology (project no. 0088-2021-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Kravchuk.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchuk, O.I., Finoshin, A.D., Mikhailov, K.V. et al. Characteristics of δ-Aminolevulinic Acid Dehydratase of the Cold-Water Sponge Halisarca dujardinii. Mol Biol 57, 1085–1096 (2023). https://doi.org/10.1134/S0026893323060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060109

Keywords:

Navigation