Skip to main content
Log in

Long Noncoding RNAs MEG3, TUG1, and hsa-miR-21-3p Are Potential Diagnostic Biomarkers for Coronary Artery Disease

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Peripheral blood biomarkers are of particular importance to diagnose certain diseases including coronary artery disease (CAD) due to their non-invasiveness. Investigating the expression of noncoding RNAs (ncRNAs) paves the way to early disease diagnosis, prognosis, and treatment. Consequently, in this research, we aimed to investigate a panel of ncRNAs as potential biomarkers in patients with coronary artery disease. Two different groups have been designed (control and CAD). All participants were subjected to interviews and clinical examinations. Peripheral blood samples were collected, and plasma was extracted. At the same time, target ncRNAs have been selected based on literature review and bioinformatic analysis, and later they underwent investigation using quantitative real-time PCR. The selected panel encompassed the long non-coding RNAs (lncRNAs) MEG3, TUG1, and SRA1, and one related microRNA (miRNA): hsa-miR-21-3p. We observed statistically significant upregulation in MEG3, TUG1, and hsa-miR21-3p in CAD patients compared to control participants (p-value < 0.01). Nevertheless, SRA1 exhibited downregulation with no statistical significance (p-value > 0.05). All ncRNAs under study displayed a significantly strong correlation with disease incidence, age, and smoking. Network construction revealed a strong relationship between MEG3 and TUG1. ROC analysis indicated high potentiality for hsa-miR-21-3p to be a promising biomarker for CAD. Moreover, MEG3 and TUG1 displayed distinguished diagnostic discrimination but less than hsa-miR-21-3p, all of them exhibited strong statistical significance differences between CAD and control groups. Conclusively, this research pinpointed that MEG3, TUG1, and hsa-miR-21-3p are potential biomarkers of CAD incidence and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Malakar A.K., Choudhury D., Halder B., Paul P., Uddin A., Chakraborty S. 2019. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 234 (10), 16812–16823. https://doi.org/10.1002/jcp.28350

    Article  CAS  PubMed  Google Scholar 

  2. Wan Q., Qian S., Huang Y., Zhang Y., Peng Z., Li Q., Shu B., Zhu L., Wang M. 2020. Drug discovery for coronary artery disease. Adv. Exp. Med. Biol. 1177, 297–339.

    Article  CAS  PubMed  Google Scholar 

  3. Hunt S.A., Abraham W.T., Chin M.H., Feldman A.M., Francis G.S., Ganiats T.G., Jessup M., Konstam M.A., Mancini D.M., Michl K., Oates J.A., Rahko P.S., Silver M.A., Stevenson L.W., Yancy C.W. 2009. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines developed in collaboration with the International society for heart and lung transplantation. J. Am. Coll. Cardiol. 53 (15), e1–e90. https://doi.org/10.1016/j.jacc.2008.11.013

    Article  PubMed  Google Scholar 

  4. Netto J., Teren A., Burkhardt R., Willenberg A., Beutner F., Henger S., Schuler G., Thiele H., Isermann B., Thiery J., Scholz M., Kaiser T. 2022. Biomarkers for non-invasive stratification of coronary artery disease and prognostic impact on long-term survival in patients with stable coronary heart disease. Nutrients. 14 (16), 3433. https://doi.org/10.3390/nu14163433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parsanathan R., Jain S.K. 2020. Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metab. Syndr. Relat. Disord. 18 (1), 10–30. https://doi.org/10.1089/met.2019.0073

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cardona-Monzonís A., García-Giménez J.L., Mena-Mollá S., Pareja-Galeano H., de la Guía-Galipienso F., Lippi G., Pallardó F.V., Sanchis-Gomar F. 2020. Non-coding RNAs and coronary artery disease. In Advances in Experimental Medicine and Biology. Vol. 1229. Xiao J., Ed. Singapore: Springer, 273–285. https://doi.org/10.1007/978-981-15-1671-9_16

  7. Poller W., Dimmeler S., Heymans S., Zeller T., Haas J., Karakas M., Leistner D.M., Jakob P., Nakagawa S., Blankenberg S., Engelhardt S., Thum T., Weber C., Meder B., Hajjar R., Landmesser U. 2018. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J. 39 (29), 2704–2716. https://doi.org/10.1093/eurheartj/ehx165

    Article  CAS  PubMed  Google Scholar 

  8. Adams V. 2019. Assessment of micro ribonucleic acids after exercise: Is this the future to detect coronary artery disease at its early stage? Eur. J. Prev. Cardiol. 26 (4), 346–347. https://doi.org/10.1177/2047487318811958

    Article  PubMed  Google Scholar 

  9. Zou L., Ma X., Lin S., Wu B., Chen Y., Peng C. 2019 Long noncoding RNA-MEG3 contributes to myocardial ischemia-reperfusion injury through suppression of MIR-7-5p expression. Biosci. Rep. 39 (8), BSR20190210. https://doi.org/10.1042/BSR20190210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piccoli M.T., Gupta S.K., Viereck J., Foinquinos A., Samolovac S., Kramer F.L., Garg A., Remke J., Zimmer K., Batkai S., Thum T. 2017. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121 (5), 575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J., Liang Y., Huang X., Guo X., Liu Y., Zhong J., Yuan J. 2019. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep. 9 (1), 460. https://doi.org/10.1038/s41598-018-36369-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu Z., He Y., Li D., Fang X., Shang T., Zhang H., Zheng X. 2017. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am. J. Transl. Res. 9 (7), 3326–3335.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li F.P., Lin D.Q., Gao L.Y. 2018. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci. 22 (21), 7439–7447. https://doi.org/10.26355/eurrev-201811-16284

    Article  PubMed  Google Scholar 

  14. Guo Y., Sun Z., Chen M., Lun J. 2021. LncRNA TUG1 regulates proliferation of cardiac fibroblast via the miR-29b-3p/TGF-β1 axis. Front. Cardiovasc. Med. 8, 646806. https://doi.org/10.3389/fcvm.2021.646806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang G., Ni X. 2021. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/ MEF2C axis. Open Life Sci. 16 (1), 242–251. https://doi.org/10.1515/biol-2021-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Foulds C.E., Tsimelzon A., Long W., Le A., Tsai S.Y., Tsai M.J., O’Malley B.W. 2010. Research resource: Expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol. Endocrinol. 24 (5), 1090–1105. https://doi.org/10.1210/me.2009-0427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren S., Zhang Y., Li B., Bu K., Wu L., Lu Y., Lu Y., Qiu Y. 2019. Downregulation of lncRNA‑SRA participates in the development of cardiovascular disease in type II diabetic patients. Exp. Ther. Med. 17 (5), 3367–3372. https://doi.org/10.3892/etm.2019.7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang S., Sun J. 2018. LncRNA SRA deregulation contributes to the development of atherosclerosis by causing dysfunction of endothelial cells through repressing the expression of adipose triglyceride lipase. Mol. Med. Rep. 18 (6), 5207–5214. https://doi.org/10.3892/mmr.2018.9497

    Article  CAS  PubMed  Google Scholar 

  19. Huang Z., Shi J., Gao Y., Cui C., Zhang S., Li J., Zhou Y., Cui Q. 2019. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47 (D1), D1013–D1017. https://doi.org/10.1093/nar/gky1010

    Article  CAS  PubMed  Google Scholar 

  20. Huang H.Y., Lin Y.C., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., Xu J.T., Li Y.M., Cai X.X., Zhou Z.Y., Chen X.H., Pei Y.Y., Hu L., Su J.J., Cui S.D., Wang F., Xie Y.Y., Ding S.Y., Luo M.F., Chou C.H., Chang N.W., Chen K.W., Cheng Y.H., Wan X.H., Hsu W.L., Lee T.Y., Wei F.X., Huang H.D. 2020. MiRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 48 (D1), D148–D154. https://doi.org/10.1093/nar/gkz896

    Article  CAS  PubMed  Google Scholar 

  21. Chang L., Zhou G., Soufan O., Xia J. 2020. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48 (W1), W244–W251. https://doi.org/10.1093/nar/gkaa467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Metsalu T., Vilo J. 2015. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43 (W1), W566–W570. https://doi.org/10.1093/nar/gkv468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A software environment for integrated models. Genome Res. 13 (11), 2498‒2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCΤ method. Methods. 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Saygili H., Bozgeyik I., Yumrutas O., Akturk E., Bagis H. 2021. Differential expression of long noncoding RNAs in patients with coronary artery disease. Mol. Syndromol. 12 (6), 372–378. https://doi.org/10.1159/000517077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bai Y., Zhang Q., Su Y., Pu Z., Li K. 2019. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/smad1 axis. Int. Heart J. 60 (2), 444–450. https://doi.org/10.1536/IHJ.18-195

    Article  CAS  PubMed  Google Scholar 

  27. Wu H., Zhao Z.A., Liu J., Hao K., Yu Y., Han X., Li J., Wang Y., Lei W., Dong N., Shen Z., Hu S. 2018. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25 (8), 511–523. https://doi.org/10.1038/s41434-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  28. Su Q., Liu Y., Lv X.W., Dai R.X., Yang X.H., Kong B.H. 2020. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Physiol. Heart Circ. Physiol. 318 (2), H332–H344. https://doi.org/10.1152/ajpheart.00444.2019

    Article  CAS  PubMed  Google Scholar 

  29. Yan H.Y., Bu S.Z., Zhou W.B., Mai Y.F. 2018. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci. 22 (20), 6922–6929.

    PubMed  Google Scholar 

  30. Kumar D., Narang R., Sreenivas V., Rastogi V., Bhati-a J., Saluja D., Srivastava K. 2020. Circulatory miR-133b and miR-21 as novel biomarkers in early prediction and diagnosis of coronary artery disease. Genes (Basel) . 11 (2), 164. https://doi.org/10.3390/genes11020164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren J., Zhang J., Xu N., Han G., Geng Q., Song J., Li S., Zhao J., Chen H. 2013. Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease. PLoS One. 8 (12), e80738. https://doi.org/10.1371/journal.pone.0080738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fleissner F., Jazbutyte V., Fiedler J., Gupta S.K., Yin X., Xu Q., Galuppo P., Kneitz S., Mayr M., Ertl G., Bauersachs J., Thum T. 2010. Short communication: Asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ. Res. 107 (1), 138–143. https://doi.org/10.1161/CIRCRESAHA.110.216770

    Article  CAS  PubMed  Google Scholar 

  33. Weber M., Baker M.B., Moore J.P., Searles C.D. 2010. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun, 393 (4), 643–648. https://doi.org/10.1016/j.bbrc.2010.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdallah H.Y., Hassan R., Fareed A., Abdelgawad M., Mostafa S.A., Mohammed E.A.-M. 2022. Identification of a circulating microRNAs biomarker panel for non-invasive diagnosis of coronary artery disease: Case–control study. BMC Cardiovasc. Disord. 22 (1), 286. https://doi.org/10.1186/s12872-022-02711-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohammed A., Shaker O.G., Khalil M.A.F., Gomaa M., Fathy S.A., Abu-El-Azayem A.K., Samy A., Aboelnor M.I., Gomaa M.S., Zaki O.M., Erfan R. 2022. Long non-coding RNA NBAT1, TUG1, miRNA-335, and miRN-A-21 as potential biomarkers for acute ischemic stroke and their possible correlation to thyroid hormones. Front Mol. Biosci. 9, 914506. https://doi.org/10.3389/fmolb.2022.914506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Hoda Y. Abdallah, Amr E. Ahmed and Mai Abdelgawad contributed to the study conception and design. Clinical diagnosis and interviews to participants done by Ahmed Fareed. Experimental work, material preparation, and data collection carried out by Mai Abdelgawad and Hoda Y. Abdallah. Mai Abdelgawad performed statistical and bioinformatic analyses. All authors analyzed and interpreted the patient data. All authors discussed the final results. Amr E. Ahmed and Hoda Y. Abdallah supervised the work. The first draft of the manuscript was written by Mai Abdelgawad. While Hoda Y. Abdallah, Ahmed Fareed, and Amr E. Ahmed edited and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Y. Abdallah.

Ethics declarations

The current study has been conformed with all institutional policies, and national rules, and was authorized by Suez Canal University Hospital (SCUH) Institutional Ethical Committee, Faculty of Medicine at Suez Canal University in Ismailia, Egypt prior to the start of the study. The study was conducted following the Declaration of Helsinki. The enrolled subjects in this study were recruited from the Suez Canal University Hospital with ethical consent number (4504). Prior to this study, both CAD cases and healthy volunteers who submitted their blood samples signed a written informed permission form, which displayed patient consent to interviews, sample collection, data access, and test result access.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelgawad, M., Abdallah, H.Y., Fareed, A. et al. Long Noncoding RNAs MEG3, TUG1, and hsa-miR-21-3p Are Potential Diagnostic Biomarkers for Coronary Artery Disease. Mol Biol 57, 1186–1198 (2023). https://doi.org/10.1134/S0026893324010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010126

Keywords:

Navigation