Skip to main content
Log in

The Antioxidant and Geroprotective Properties of an Extract of Mountain Ash (Sorbus aucuparia L.) Fruits

  • OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE SYSTEMS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Plant polyphenols are characterized by a wide range of biological activities, including antioxidant properties, and have a high geroprotective potential. The purpose of this work was to investigate the effect of the extract of rowan berries (Sorbus aucuparia L.) on the lifespan and stress resistance of Drosophila melanogaster with the identification of possible mechanisms of its biological activity. It has been established that an ethanol extract of S. aucuparia berries, the main components of which are rutin and cyanidin-3-rutinoside, has a pronounced antioxidant activity in vitro. At the same time, treatment with rowan berry extract increased the resistance of D. melanogaster males to starvation, but reduced resistance to hyperthermia. In females, the extract reduced resistance to oxidative stress but increased resistance to hyperthermia. The effects of rowan berry extract on longevity depended both on its concentration and on the sex of fruit flies. In response to treatment with rowan berry extract, D. melanogaster males and females showed slight differences in the background level of expression of cellular stress response genes, including heat shock genes (hsp27, hsp68, and hsp83), oxidative stress resistance genes (hif1, nrf2, and sod1), circadian rhythm genes (clk and per), and the longevity gene sirt1, which may explain the differences in the observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Partridge L., Deelen J., Slagboom P.E. 2018. Facing up to the global challenges of ageing. Nature. 561, 45‒56.

    Article  CAS  PubMed  Google Scholar 

  2. Partridge L., Fuentealba M., Kennedy B.K. 2020. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513‒532.

    Article  CAS  PubMed  Google Scholar 

  3. Moskalev A. 2020. Is anti-ageing drug discovery becoming a reality? Exp. Opin. Drug Discovery. 15, 135‒138.

    Article  Google Scholar 

  4. Yuan L., Alexander P.B., Wang X.F. 2020. Cellular senescence: from anti-cancer weapon to anti-aging target. Sci. China Life Sci. 63, 332‒342.

    Article  PubMed  Google Scholar 

  5. Xu K., Guo Y., Li Z., Wang Z. 2019. Aging biomarkers and novel targets for anti-aging interventions. Adv. Exp. Med. Biol. 1178, 39‒56.

    Article  CAS  PubMed  Google Scholar 

  6. Moskalev A., Guvatova Z., Lopes I.D.A., Beckett C.W., Kennedy B.K., De Magalhaes J.P., Makarov A.A. 2022. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol. Metabolism. 33, 266‒280.

    Article  CAS  Google Scholar 

  7. Taormina G., Ferrante F., Vieni S., Grassi N., Russo A., Mirisola M.G. 2019. Longevity: Lesson from model organisms. Genes (Basel). 10, 518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Magalhães J.P. 2021. Longevity pharmacology comes of age. Drug Discov. Today. 26, 1559‒1562.

    Article  PubMed  Google Scholar 

  9. Moskalev A., Chernyagina E., de Magalhães J.P., Barardo D., Thoppil H., Shaposhnikov M., Budovsky A., Fraifeld V.E., Garazha A., Tsvetkov V., Bronovitsky E., Bogomolov V., Scerbacov A., Kuryan O., Gurino-vich R., Jellen L.C., Kennedy B., Mamoshina P., Dobrovolskaya E., Aliper A., Kaminsky D., Zhavoronkov A. 2015. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY). 7, 616‒628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barardo D., Thornton D., Thoppil H., Walsh M., Sharifi S., Ferreira S., Anžič A., Fernandes M., Monteiro P., Grum T., Cordeiro R., De-Souza E.A., Budovsky A., Araujo N., Gruber J., Petrascheck M., Fraifeld V.E., Zhavoronkov A., Moskalev A., de Magalhães J.P. 2017. The DrugAge database of aging-related drugs. Aging Cell. 16, 594‒597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moskalev A. 2021. Nutritional regulation of aging and longevity. In Nutrition, Food and Diet in Ageing and Longevity. Rattan S.I.S., Kaur G., Eds. Cham. Springer, 439‒464.

    Google Scholar 

  12. Fan X., Fan Z., Yang Z., Huang T., Tong Y., Yang D., Mao X., Yang M. 2022. Flavonoids-natural gifts to promote health and longevity. Int. J. Mol. Sci. 23, 2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mechchate H., El Allam A., El Omari N., El Hachlafi N., Shariati M.A., Wilairatana P., Mubarak M.S., Bouyahya A. 2022. Vegetables and their bioactive compounds as anti-aging drugs. Molecules. 27, 2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forni C., Facchiano F., Bartoli M., Pieretti S., Facchiano A., D’Arcangelo D., Norelli S., Valle G., Nisini R., Beninati S., Tabolacci C., Jadeja R.N. 2019. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int. 2019, 8748253.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lobo V., Patil A., Phatak A., Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4, 118‒126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharifi-Rad M., Anil Kumar N.V., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., Prakash Mishra A., Nigam M., El Rayess Y., Beyrouthy M.E., Polito L., Iriti M., Martins N., Martorell M., Docea A.O., Setzer W.N., Calina D., Cho W.C., Sharifi-Rad J. 2020. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 11, 694.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harman D. 1956. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298‒300.

    Article  CAS  PubMed  Google Scholar 

  18. Beckman K.B., Ames B.N. 1998. The free radical theory of aging matures. Physiol. Rev. 78, 547−581.

    Article  CAS  PubMed  Google Scholar 

  19. Lin M.T., Flint Beal M. 2003. The oxidative damage theory of aging. Clin. Neurosci. Res. 2, 305‒315.

    Article  CAS  Google Scholar 

  20. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., Abete P. 2018. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 13, 757‒772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. 2020. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 57, 100982.

    Article  CAS  PubMed  Google Scholar 

  22. Sadowska-Bartosz I., Bartosz G. 2014. Effect of antioxidants supplementation on aging and longevity. Biomed. Res. Int. 2014, 404680.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shields H.J., Traa A., Van Raamsdonk J.M. 2021. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 9, 628157.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Magwere T., West M., Riyahi K., Murphy M.P., Smith R.A., Partridge L. 2006. The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech. Ageing Dev. 127, 356‒370.

    Article  CAS  PubMed  Google Scholar 

  25. Zou Y.X., Ruan M.H., Luan J., Feng X., Chen S., Chu Z.Y. 2017. Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster. J. Nutr. Health Aging. 21, 314‒319.

    Article  CAS  PubMed  Google Scholar 

  26. Le Bourg É. 2001. Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett. 498, 183‒186.

    Article  CAS  Google Scholar 

  27. Dröge W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95.

    Article  PubMed  Google Scholar 

  28. Lander H.M. 1997. An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118‒124.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y., Wu Y., Sun X.-D., Zhang Y. 2021. Reactive oxygen species, glucose metabolism, and lipid metabolism. In Oxidative Stress: Human Diseases and Medicine. Huang C., Zhang Y., Eds. Singapore: Springer Singapore, pp. 213‒235.

    Google Scholar 

  30. Burdon R.H. 1994. Free radicals and cell proliferation. In New Comprehensive Biochemistry, vol. 28. Rice-Evans C.A., Burdon R.H., Eds. Elsevier. Chapter 6, 155‒185.

  31. Kotha R.R., Tareq F.S., Yildiz E., Luthria D.L. 2022. Oxidative stress and antioxidants—a critical review on in vitro antioxidant assays. Antioxidants. 11, 2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deledda A., Annunziata G., Tenore G.C., Palmas V., Manzin A., Velluzzi F. 2021. Diet-derived antioxidants and their role in inflammation, obesity and gut microbiota modulation. Antioxidants (Basel). 10, 708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Šavikin K.P., Zdunić G.M., Krstić-Milošević D.B., Šircelj H.J., Stešević D.D., Pljevljakušić D.S. 2017. Sorbus aucuparia and Sorbus aria as a source of antioxidant phenolics, tocopherols, and pigments. Chem. Biodiversity. 14, e1700329.

    Article  Google Scholar 

  34. Platonova E.Y., Zemskaya N.V., Shaposhnikov M.V., Golubev D.A., Kukuman D.V., Pakshina N.R., Ulyasheva N.S., Punegov V.V., Patov S.A., Moskalev A. 2022. Geroprotective effects of Sorbaronia mitschurinii fruit extract on Drosophila melanogaster. J. Berry Res. 12, 73‒92.

    Article  CAS  Google Scholar 

  35. Golubev D., Zemskaya N., Shevchenko O., Shaposhnikov M., Kukuman D., Patov S., Punegov V., Moskalev A. 2022. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology. 23, 215‒235.

    Article  CAS  PubMed  Google Scholar 

  36. Buravlev E.V., Shevchenko O.G., Anisimov A.A., Su-ponitsky K.Y. 2018. Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity. Eur. J. Med. Chem. 152, 10‒20.

    Article  CAS  PubMed  Google Scholar 

  37. Martakov I.S., Shevchenko O.G., Torlopov M.A., Gerasimov E.Y., Sitnikov P.A. 2019. Formation of gallic acid layer on γ-AlOOH nanoparticles surface and their antioxidant and membrane-protective activity. J. Inorg. Biochem. 199, 110782.

    Article  CAS  PubMed  Google Scholar 

  38. Martakov I.S., Shevchenko O.G., Torlopov M.A., Sitnikov P.A. 2022. Colloidally stable conjugates of phenolic acids with γ-AlOOH nanoparticles as efficient and biocompatible nanoantioxidants. J. Mol. Struct. 1248, 131471.

    Article  CAS  Google Scholar 

  39. Popova S.A., Pavlova E.V., Shevchenko O.G., Chukicheva I.Y., Kutchin A.V. 2021. Isobornylchalcones as scaffold for the synthesis of diarylpyrazolines with antioxidant activity. Molecules. 26, 3579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikonova N.N., Hurshkainen T.V., Kuchin A.V., Shevchenko O.G. 2022. “Green technology” processing of pine (Pinus sylvestris L.) and larch (Larix sibirica Ledeb.) wood greenery to produce bioactive extracts. Holzforschung. 76, 276‒284.

    Article  CAS  Google Scholar 

  41. Torlopov M., Shevchenko O., Drozd N., Udoratina E. 2023. Cationic starch-based hemocompatible polymeric antioxidant: Synthesis, in vitro, and in vivo study. React. Funct. Polym. 182, 105457.

    Article  CAS  Google Scholar 

  42. Sevgi K., Tepe B., Sarikurkcu C. 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 77, 12‒21.

    Article  CAS  PubMed  Google Scholar 

  43. Tabart J., Kevers C., Pincemail J., Defraigne J.-O., Dommes J. 2009. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 113, 1226‒1233.

    Article  CAS  Google Scholar 

  44. Celik S.E., Ozyürek M., Güçlü K., Apak R. 2010. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta. 81, 1300‒1309.

    Article  CAS  PubMed  Google Scholar 

  45. Boulebd H., Zine Y., Khodja I.A., Mermer A., Demir A., Debache A. 2022. Synthesis and radical scavenging activity of new phenolic hydrazone/hydrazide derivatives: experimental and theoretical studies. J. Mol. Struct. 1249, 131546.

    Article  CAS  Google Scholar 

  46. Chawla R., Arora R., Kumar R., Sharma A., Prasad J., Singh S., Sagar R., Chaudhary P., Shukla S., Kaur G., Sharma R.K., Puri S.C., Dhar K.L., Handa G., Gupta V.K., Qazi G.N. 2005. Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: Role in radiation protection. Mol. Cell Biochem. 273, 193‒208.

    Article  CAS  PubMed  Google Scholar 

  47. Acker C.I., Brandão R., Rosário A.R., Nogueira C.W. 2009. Antioxidant effect of alkynylselenoalcohol compounds on liver and brain of rats in vitro. Environ. Toxicol. Pharmacol. 28, 280‒287.

    Article  CAS  PubMed  Google Scholar 

  48. Kim J. 2013. Preliminary evaluation for comparative antioxidant activity in the water and ethanol extracts of dried citrus fruit (Citrus unshiu) peel using chemical and biochemical in vitro assays. Food Nutrit. Sci. 4, 177‒188.

    CAS  Google Scholar 

  49. Stefanello S.T., Prestes A.S., Ogunmoyole T., Salman S.M., Schwab R.S., Brender C.R., Dornelles L., Rocha J.B., Soares F.A. 2013. Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicol. In Vitro. 27, 1433‒1439.

    Article  CAS  PubMed  Google Scholar 

  50. Takebayashi J., Chen J., Tai A. 2010. A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. Methods Mol. Biol. 594, 287‒296.

    Article  CAS  PubMed  Google Scholar 

  51. van den Berg J.J., Op den Kamp J.A., Lubin B.H., Roelofsen B., Kuypers F.A. 1992. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radical Biol. Med. 12, 487‒498.

    Article  CAS  Google Scholar 

  52. Landis G.N., Doherty D., Tower J. 2020. Analysis of Drosophila melanogaster Lifespan. In Aging: Methods and Protocols. Curran S.P., Ed. New York: Springer US, 47‒56.

    Google Scholar 

  53. Xia B., de Belle J.S. 2016. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany NY). 8, 1115‒1134.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fleming T.R., O’Fallon J.R., O’Brien P.C., Harrington D.P. 1980. Modified Kolmogorov‒Smirnov Test procedures with application to arbitrarily right-censored data. Biometrics. 36, 607‒625.

    Article  Google Scholar 

  55. Bland J.M., Altman D.G. 1998. Survival probabilities (the Kaplan‒Meier method). BMJ. 317, 1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mantel N. 1966. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163‒170.

    CAS  PubMed  Google Scholar 

  57. Wang C., Li Q., Redden D.T., Weindruch R., Allison D.B. 2004. Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629‒632.

    Article  PubMed  Google Scholar 

  58. Han S.K., Lee D., Lee H., Kim D., Son H.G., Yang J.S., Lee S.V., Kim S. 2016. OASIS 2: Online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 7, 56147‒56152.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Budzynska B., Faggio C., Kruk-Slomka M., Samec D., Nabavi S.F., Sureda A., Devi K.P., Nabavi S.M. 2019. Rutin as neuroprotective agent: From bench to bedside. Curr. Med. Chem. 26, 5152‒5164.

    Article  CAS  PubMed  Google Scholar 

  60. Ghorbani A. 2017. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 96, 305‒312.

    Article  CAS  PubMed  Google Scholar 

  61. Habtemariam S. 2016. Rutin as a natural therapy for alzheimer’s disease: Insights into its mechanisms of action. Curr. Med. Chem. 23, 860‒873.

    Article  CAS  PubMed  Google Scholar 

  62. Li S., Li J., Pan R., Cheng J., Cui Q., Chen J., Yuan Z. 2022. Sodium rutin extends lifespan and health span in mice including positive impacts on liver health. Br. J. Pharmacol. 179, 1825‒1838.

    Article  CAS  PubMed  Google Scholar 

  63. Ockermann P., Lizio R., Hansmann J. 2022. Healthberry 865® and a subset of its single anthocyanins attenuate oxidative stress in human endothelial in vitro models. Nutrients. 14, 2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarv V., Venskutonis P.R., Rätsep R., Aluvee A., Kazernavičiūtė R., Bhat R. 2021. Antioxidants characterization of the fruit, juice, and pomace of sweet rowanberry (Sorbus aucuparia L.) cultivated in Estonia. Antioxidants (Basel). 10, 1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clemens M.R., Waller H.D. 1987. Lipid peroxidation in erythrocytes. Chem. Physics Lipids. 45, 251‒268.

    Article  CAS  Google Scholar 

  66. Ko F.N., Hsiao G., Kuo Y.H. 1997. Protection of oxidative hemolysis by demethyldiisoeugenol in normal and beta-thalassemic red blood cells. Free Radical Biol. Med. 22, 215‒222.

    Article  CAS  Google Scholar 

  67. Krokosz A., Grebowski J., Szweda-Lewandowska Z., Rodacka A., Puchala M. 2013. Can melatonin delay oxidative damage of human erythrocytes during prolonged incubation? Adv. Med. Sci. 58, 134‒142.

    Article  CAS  PubMed  Google Scholar 

  68. Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. 2012. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012, Cd007176.

    PubMed  PubMed Central  Google Scholar 

  69. Vayndorf E.M., Lee S.S., Liu R.H. 2013. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J. Funct. Foods. 5, 1236‒1243.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schriner S.E., Katoozi N.S., Pham K.Q., Gazarian M., Zarban A., Jafari M. 2012. Extension of Drosophila lifespan by Rosa damascena associated with an increased sensitivity to heat. Biogerontology. 13, 105‒117.

    Article  PubMed  Google Scholar 

  71. Fabrizio P., Pozza F., Pletcher S.D., Gendron C.M., Longo V.D. 2001. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 292, 288‒290.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson T.E., de Castro E., Hegi de Castro S., Cypser J., Henderson S., Tedesco P. 2001. Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp. Gerontol. 36, 1609‒1617.

    Article  CAS  PubMed  Google Scholar 

  73. Longo V.D. 2003. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp. Gerontol. 38, 807‒811.

    Article  CAS  PubMed  Google Scholar 

  74. Perez V.I., Bokov A., Van Remmen H., Mele J., Ran Q., Ikeno Y., Richardson A. 2009. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta. 1790, 1005‒1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rose M., Flatt T., Graves J., Jr., Greer L.F., Martínez D., Matos M., Mueller L., Shmookler Reis R., Shahrestani P. 2012. What is aging? Front. Gen-et. 3, 134.

    Google Scholar 

  76. Ekmekcioglu C. 2020. Nutrition and longevity—from mechanisms to uncertainties. Crit. Rev. Food. Sci. Nutr. 60, 3063‒3082.

    Article  CAS  PubMed  Google Scholar 

  77. Ohlhorst S.D., Russell R., Bier D., Klurfeld D.M., Li Z., Mein J.R., Milner J., Ross A.C., Stover P., Konopka E. 2013. Nutrition research to affect food and a healthy life span. J. Nutr. 143, 1349‒1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Calabrese E.J. 2003. The maturing of hormesis as a credible dose-response model. Nonlinearity Biol. Toxicol. Med. 1, 319‒343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Son T.G., Camandola S., Mattson M.P. 2008. Hormetic dietary phytochemicals. Neuromolecular Med. 10, 236‒246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martel J., Ojcius D.M., Ko Y.F., Ke P.Y., Wu C.Y., Peng H.H., Young J.D. 2019. Hormetic effects of phytochemicals on health and longevity. Trends Endocrinol. Metab. 30, 335‒346.

    Article  CAS  PubMed  Google Scholar 

  81. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Iavicoli I., Di Paola R., Koverech A., Cuzzocrea S., Rizzarelli E., Calabrese E.J. 2012. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta. 1822, 753‒783.

    Article  CAS  PubMed  Google Scholar 

  82. Tower J. 2017. Sex-specific gene expression and life span regulation. Trends Endocrinol. Metab. 28, 735‒747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garratt M. 2020. Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. Nutr. Healthy Aging. 5, 247‒259.

    Article  CAS  Google Scholar 

  84. Lushchak O., Strilbytska O., Storey K.B. 2023. Gender-specific effects of pro-longevity interventions in Drosophila. Mech. Ageing Dev. 209, 111754.

    Article  CAS  PubMed  Google Scholar 

  85. Dubowy C., Sehgal A. 2017. Circadian rhythms and sleep in Drosophila melanogaster. Genetics. 205, 1373‒1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krishnan N., Kretzschmar D., Rakshit K., Chow E., Giebultowicz J.M. 2009. The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY). 1, 937‒948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fu L., Pelicano H., Liu J., Huang P., Lee C. 2002. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 111, 41‒50.

    Article  CAS  PubMed  Google Scholar 

  88. Liu X., Jiang N., Hughes B., Bigras E., Shoubridge E., Hekimi S. 2005. Evolutionary conservation of the clk‑1-dependent mechanism of longevity: Loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424‒2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong A., Boutis P., Hekimi S. 1995. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 139, 1247‒1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen D., Thomas E.L., Kapahi P. 2009. HIF-1 modulates dietary restriction-mediated lifespan etension via IRE-1 in Caenorhabditis elegans. PLoS Genet. 5, e1000486.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Parker J.D., Parker K.M., Sohal B.H., Sohal R.S., Keller L. 2004. Decreased expression of Cu–Zn superoxide dismutase 1 in ants with extreme lifespan. Proc. Natl. Acad. Sci. U. S. A. 101, 3486‒3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Satoh A., Brace C.S., Rensing N., Cliften P., Wozniak D.F., Herzog E.D., Yamada K.A., Imai S. 2013. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416‒430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Higgins C.B., Mayer A.L., Zhang Y., Franczyk M., Ballentine S., Yoshino J., DeBosch B.J. 2022. SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase. Nat. Commun. 13, 1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pardo P.S., Boriek A.M. 2020. SIRT1 Regulation in ageing and obesity. Mech. Ageing Dev. 188, 111249.

    Article  CAS  PubMed  Google Scholar 

  95. Moskalev A., Chernyagina E., Tsvetkov V., Fedintsev A., Shaposhnikov M., Krut’ko V., Zhavoronkov A., Kennedy B.K. 2016. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 15, 407‒415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The evaluation of antioxidant activity was carried out using the equipment of the Molecular Biology Center for Collective Use of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences (Institute of Biology, Federal Research Center, Komi Scientific Center, Ural Branch, Russian Academy of Sciences).

Flies were used in the work (http://www.ckp-rf.ru/usu/471927/) and mouse (http://www.ckp-rf.ru/usu/471933/) from the scientific collections of experimental animals of the Federal Research Center of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences.

Funding

The research was carried out within the framework of the state task of the Institute of Biochemistry of the Federal Research Center of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences on the topic Genetic and functional studies of the effects of geroprotective interventions on the model Drosophila melanogaster (No. 122040600022-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moskalev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies using mice were performed in vitro on tissues of intact laboratory animals, without using animals as experimental objects.

CONFLICT OF INTEREST

Conflict of interests. The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: AAPH, 2,2'-azobis(amidinopropane) dihydrochloride; ABTS, (2,2'-azino-bis-(3-ethylbenzthiozolin-6-sulfonic acid)); DPPH, (2,2-diphenyl-1-picrylhydrazyl); LPO, lipid peroxidation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platonova, E.Y., Golubev, D.A., Zemskaya, N.V. et al. The Antioxidant and Geroprotective Properties of an Extract of Mountain Ash (Sorbus aucuparia L.) Fruits. Mol Biol 57, 978–992 (2023). https://doi.org/10.1134/S0026893323060134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060134

Keywords:

Navigation