Skip to main content
Log in

Changes in the Activity of Antioxidant Systems of Escherichia coli under Phosphate Starvation

  • OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE SYSTEMS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Changes in the activity of antioxidant systems in Escherichia coli during phosphate starvation have been studied. It is shown that starvation was accompanied by a decrease in the intensity of respiration, an increase in the rate of superoxide production, and a decrease in the level of ATP. Simultaneously, there was a decrease in H2O2 in the medium and a significant increase in the expression of the katG and katE genes which encode the HPI and HPII catalases, respectively. At the same time, there was no drop in the membrane potential, which may indicate the retention of normal membrane activity in starving cells. It has been shown for the first time that the transition of E. coli to phosphate starvation is accompanied by significant changes in the status of glutathione. The most important of these are associated with a decrease in the level of reduced glutathione in the medium (GSHout) and with a simultaneous increase in its content in the cytoplasm (GSHin), as well as a shift in the GSHin to oxidized glutathione form (GSSGin) ratio towards reductive values, and GSHout/GSSGout towards oxidative values. Among the mutants used in the work, the gor trxB double mutant, which is deficient in the synthesis of glutathione reductase and thioredoxin reductase, showed the most pronounced distinctive features. Compared to the parental strain, this mutant showed a multiple higher expression of katG::lacZ, the highest level of oxidized intra- and extracellular glutathione, and, accordingly, the lowest GSH/GSSG ratio in both compartments. In general, the data we obtained indicate that during phosphate starvation the interaction of the glutathione redox-system and regulons that control protection against reactive oxygen species creates conditions that allow maintaining the concentration of ROS below the toxic level. As a result, phosphate-starved E. coli cells can maintain high viability for a long period of time, which allows them to quickly resume growth after the addition of phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sevilla E., Bes M.T., Gonzalez A., Peleato M.L., Fillat M.F. 2019. Redox-based transcriptional regulation in prokaryotes: Revisiting model mechanisms. Antioxid. Redox Signal. 30, 1651–1696. https://doi.org/10.1089/ars.2017.7442

    Article  CAS  PubMed  Google Scholar 

  2. Imlay J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Ann. Rev. Biochem. 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  CAS  PubMed  Google Scholar 

  3. Smirnova G.V., Oktyabrsky O.N. 2005. Glutathione in bacteria. Biochemistry (Moscow). 70, 1199–1211.

    CAS  PubMed  Google Scholar 

  4. Vlamis-Gardikas A. 2008. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revised. Biochim. Biophys. Acta. 1780, 1170–1200. https://doi.org/10.1016/j.bbagen.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Smirnova G., Muzyka N., Oktyabrsky O. 2012. Transmembrane glutathione cycling in growing Escherichia coli cells. Microbiol. Res. 167, 166–172. https://doi.org/10.1016/j.micres.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  6. Carmel-Harel O., Storz G. 2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461. https://doi.org/10.1146/annurev.micro.54.1.439

    Article  CAS  PubMed  Google Scholar 

  7. Wanner B.L. 1996. Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbrager H.E., Eds. Washington DC: Am. Soc. Microbiol., 1357–1381.

    Google Scholar 

  8. Lamarche M.G., Wanner B.L., Crepin S., Harel J. 2008. The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32 (3), 461–473. https://doi.org/10.1111/j.1574-6976.2008.00101.x

    Article  CAS  PubMed  Google Scholar 

  9. VanBogelen R.A., Olson E.R., Wanner B.L., Neidhardt F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178 (15), 4344–4366. https://doi.org/10.1128/jb.178.15.4344-4366.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerard F., Dri A.M., Moreau P.L. 1999. Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions. Microbiology. 145, 1547–1562. https://doi.org/10.1099/13500872-145-7-1547

    Article  CAS  PubMed  Google Scholar 

  11. Moreau P.L., Gerard F., Lutz N.W., Cozzone P. 2001. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol. Microbiol. 39, 1048–1060. https://doi.org/10.1046/j.1365-2958.2001.02303.x

    Article  CAS  PubMed  Google Scholar 

  12. Moreau P.L. 2004. Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions. J. Bacteriol. 186, 7364–7368. https://doi.org/10.1128/JB.186.21.7364-7368.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yuan Z.C., Zaheer R., Finan T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58 (3), 877–894. https://doi.org/10.1111/j.1365-2958.2005.04874.x

    Article  CAS  PubMed  Google Scholar 

  14. Smirnova G.V., Tyulenev A.V., Bezmaternykh K.V., Muzyka N.G., Ushakov V.Y., Oktyabrsky O.N. 2019. Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells. Amino Acids. 51, 1577–1592. https://doi.org/10.1007/s00726-019-02795-2

    Article  CAS  PubMed  Google Scholar 

  15. Park S., Imlay, J.A. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol. 185, 1942–1950. https://doi.org/10.1128/JB.185.6.1942-1950.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imlay K.R.C., Korshunov S., Imlay J.A. 2015. The physiological roles and adverse effects of the two cystine importers of Escherichia coli. J. Bacteriol. 197, 3629–3644. https://doi.org/10.1128/JB.00277-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korshunov S., Imlay K.R.C., Imlay J.A. 2020. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol. Microbiol. 113, 22–39. https://doi.org/10.1111/mmi.14403

    Article  CAS  PubMed  Google Scholar 

  18. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2, 2006.0008. https://doi.org/10.1038/msb4100050

  19. Tao K., Makino K., Yonei S., Nacata A., Shinagawa H. 1989. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: Homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. 218, 371–376. https://doi.org/10.1007/bf00332397

    Article  CAS  PubMed  Google Scholar 

  20. Mulvey M.R., Switala J., Borys A., Loewen P.C. 1990. Regulation of transcription of katE and katF in Escherichia coli. J. Bacteriol. 172, 6713–6720. https://doi.org/10.1128/jb.172.12.6713-6720.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Volkert M.R., Gately F.H., Hajec L.I. 1989. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents. Mutation. Res. 217, 109–115. https://doi.org/10.1016/0921-8777(89)90062-1

    Article  CAS  PubMed  Google Scholar 

  22. Maringanti S., Imlay J.A. 1999. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181, 3792–3802. https://doi.org/10.1128/JB.181.12.3792-3802.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neidhardt F.C., Bloch P.L., Smith D.F. 1974. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747. https://doi.org/10.1128/jb.119.3.736-747.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickens H.J., Pinney R.J., Mason D.J., Gant V.A. 2000. Flow cytometric investigation of filamentation, membrane patency and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob. Agents Chemother. 44, 682–687. https://doi.org/10.1128/AAC.44.3.676-681.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smirnova G.V., Muzyka N.G., Ushakov V.Y., Tyulenev A.V., Oktyabrsky O.N. 2015. Extracellular superoxide provokes glutathione efflux from Escherichia coli cells. Res. Microbiol. 166, 609–617. https://doi.org/10.1016/j.resmic.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  26. Korshunov S., Imlay J.A. 2006. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334. https://doi.org/10.1128/JB.00554-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seaver L.C., Imlay J.A. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181. https://doi.org/10.1128/JB.183.24.7173-7181.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522. https://doi.org/10.1016/0003-2697(69)90064-5

    Article  CAS  PubMed  Google Scholar 

  29. Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press.

    Google Scholar 

  30. Ivanova A., Miller C., Glinsky G., Eisenstark A. 1994. Role of the rpoS(katF) in oxyR independent regulation of hydroperoxidase I in Escherichia coli. Mol. Microbiol. 12, 571–578. https://doi.org/10.1111/j.1365-2958.1994.tb01043.x

    Article  CAS  PubMed  Google Scholar 

  31. Ihssen J., Egli T. 2004. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology. 150, 1637–1648. https://doi.org/10.1099/mic.0.26849-0

    Article  CAS  PubMed  Google Scholar 

  32. Imlay J.A., Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 240, 640–642. https://doi.org/10.1126/science.2834821

    Article  CAS  PubMed  Google Scholar 

  33. Hantke K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177. https://doi.org/10.1016/s1369-5274(00)00184-3

    Article  CAS  PubMed  Google Scholar 

  34. Maslowska K.H., Makiela-Dzbenska K., Fijalkowska I.J. 2019. The SOS system: A complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60, 368–384. https://doi.org/10.1002/em.22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tyulenev A.V., Smirnova G.V., Muzyka N.G., Ushakov V.Y., Oktyabrsky O.N. 2018. The role of sulfides in stress-induced changes of Eh in Escherichia coli cultures. Bioelectrochemistry. 121, 11–17. https://doi.org/10.1016/j.bioelechem.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  36. Smirnova G.V., Tyulenev A.V., Muzyka N.G., Oktyabrsky O.N. 2018. The sharp phase of respiratory inhibition during amino acid starvation in Escherichia coli is RelA-dependent and associated with regulation of ATP synthase activity. Res. Microbiol. 169, 157–165. https://doi.org/10.1016/j.resmic.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  37. Owens R.A., Hartman P.E. 1986. Export of glutathione by some widely used Salmonella typhimurium and Escherichia coli strains. J. Bacteriol. 168, 109–114. https://doi.org/10.1128/jb.168.1.109-114.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Imlay J.A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454. https://doi.org/10.1038/nrmicro3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aslund F., Zheng M., Beckwith J., Storz G. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. U. S. A. 96, 6161–6165. https://doi.org/10.1073/pnas.96.11.6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smirnova G.V., Tyulenev A.V., Muzyka N.G., Peters M.A., Oktyabrsky O.N. 2017. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli. Res. Microbiol. 168, 64–73. https://doi.org/10.1016/j.resmic.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  41. Smirnova G.V., Tyulenev A.V., Muzyka N.G., Oktyabrsky O.N. 2022. Study of the contribution of active defense mechanisms to ciprofloxacin tolerance in Escherichia coli growing at different rates. Antonie Van Leeuwenhoek. 115, 233–251. https://doi.org/10.1007/s10482-021-01693-6

    Article  CAS  PubMed  Google Scholar 

  42. Smirnova G., Tyulenev A., Muzyka N., Ushakov V., Samoilova Z., Oktyabrsky O. 2023. Influence of growth medium composition on physiological responses of Escherichia coli to the action of chloramphenicol and ciprofloxacin. BioTech. 12, 43. https://doi.org/10.3390/biotech12020043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Science Foundation (grant no. 22-14-00093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Oktyabrsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants or animals as research subjects.

CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations. ROS, reactive oxygen species; GSH (L-γ-glutamyl-L-cysteinyl-glycine), reduced form of glutathione; GSSG, oxidized form of glutathione; in/out, in the cytoplasm/in the culture medium; SOD, superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, G.V., Tyulenev, A.V., Muzyka, N.G. et al. Changes in the Activity of Antioxidant Systems of Escherichia coli under Phosphate Starvation. Mol Biol 57, 965–977 (2023). https://doi.org/10.1134/S0026893323060171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060171

Keywords:

Navigation